
ON SOME ASPECTS OF INTEGER LINEAR PROGRAMMING

by

Rdmulo H. Gonzalez-Zubieta

Technical Report No. 16

On Work Performed under'

Contract No. DA-31-124-ARO-D-209
U.S. Army Research Office (Durham)

Department of the Army Project No. 20011501B704

FUNDAMENTAL INVESTIGATIONS
in

METHODS OF OPERATIONS RESEARCH

Project D.S.R. 5217
Operations Research Center

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Cambridge 39, Massachusetts

June, 1965

* - Adapted from a thesis presented to the Sloan School of Management in
partial fulfillment of the requirements for the degree of Doctor of
Philosophy, May 1965.

Best Available Copy

A/

FOREWORD

The Center for Operations Research at the Massachusetts

Institute of Technology is an inter-departmental activity devoted to

graduate training and research in the field of operations research.

Its products are books, journal articles, detailed reports such as

this one, and students trained in the theory and practice of operations

research.

The work of the Center is supported, in part, by government

contracts and industrial grants-in-aid. Work reported herein was

supported (in part) by the U. S. Army Research Office (Durham),

under Contract Number DA-31-124-ARO-D-209. Reporduction in

whole or in part is permitted for any purpose of the United States

Governmenf.

Philip M. Morse
Director of tho Center

George R. Murray, Jr.
Research Associate

-ii -

ACKNOWLEDGMENTS

I want to express my great appreciation to my thesis advisor,

Professor John D. C. Little, for all his suggestions and encouragement,

and in particular, for his help in proof-reading the manuscript.

I also want to thank Professor Martin Greenberger, Chairman of

the Interdepartmental Doctoral Committee, and Professors Philip M.

Morse and Ronald A. Howard, members of the same committee, for their

contribution to my graduate education.

Dr. George R. Murray, Dr. Herbert P. Galliher, and Mrs. Nobu

McNeill have been of great assistance to me during my four years as

Research Assistant at the Operations Research Center.

The financial support of the Banco de Mexico, S. A. during the

last two years, has made it possible for me to complete my graduate

studies.

Thanks are due to Miss Carol Uhlinger for the excellent typing

of the manuscript.

Finally, I want to express my gratitude to my wife for her reassuring

support and for her constant optimism.

-iii-

ON SOME ASPECTS OF INTEGER ,INEAR PROGRAMMING

by

t /
ROMULO H. GONZALE -ZUBIETA

Submitted to the Sloan School of M nagement on May 25, 1965,
in partial fulfillment of the requirement for the degree of Doctor of
Philosophy.

ABSTRACT

A primal feasible (all-integer) int ger linear programming
algorithm has been developed znd progrrnmed, together with a related
procedure for obtaining a first feasible solution. Once a feasible
solution is found, the algorithr- maintains feasibility at each stage, in
contrast to other algorithms that have been programmed and are
currently available. These other algorithms do not achieve feasibility
until the optimal solution is reached. The primal feasible algorithm is
based on a par;icular way of applying the cutting planes previously
developed by R. E. GOMORY, and on a specific interpretation of their
role.

The finiteness of convergence has been established for two.-
dimensional plroblems but not for the general case; however, there
appears to be at least computational convergence in a considerable
fraction of the cases.

In addition, a Generalized Euclidean Algorithm for finding the
greatest common divisor for more than two numbers is defined. The
solution of systems of linear diophantine equations is presented in
terms of integer linear programming.

Some geometric considerations th at help to illuminate the working
of the algorithm, are examined.

Thesis Advisor: Dr. John D. C. Little
Title: Associate Professor of Industrial'Management

-iv-

TABLE OF CONTENTS

Page

CHAPTER 1 - INTRODUCTION 1

1.1 The Integer and the Mixed Linear Programming Problems 1

1.2 Available Irteger LP Algorithms 2

1. 3 Our Results 5

CHAPTER 2 - A PRIMAL FEASIBLE ALGORITHM 8

2. 1 Thc Problem. Notation 8

2.2 Pivoting. The Simplex Criterion 11

2. 3 Gomory Inequalities 15

2. 4 Development of the Basic Algorithm 22

2. 5 An Example 25

CHAPTER 3 - OBTAINING A FIRST FEASIBLE SOLUTION 27

3. 1 Different Types of Variables 27

3.1.1 Unsigned Variables 27
3.1.2 Non-Negative Variables 28
3.1.3 Zero Variables (The Treatment of Equalities) 28
3.1.4 Bounded Variables 32
3.1.5 Objective Va-iables 33

3. 2 Finding a First Feasible Solution 34

CHAPTER 4 - THE PROBLEM OF FINITE CONVERGENCE 41

4. 1 Considerations about Convergence 41

4. 2 Convergence of Two-Dimensional Problems 44

-- V_

4. 3 A Promising Family of Rules of Choice for 6
n-Dimensional Convergence

4. 4 Computational Experience 6

CHAPTER 5 - INTEGER LP AND NUMBER THEORY 6

5. I Generalized Euclidean Algorithms 6'

5. 2 General Solution of Linear Diophantine Equations 7.

5. 3 Non-Negative Solution of Linear Diophantine Equations 7!

CHAPTER 6 - GEOMETRIC CONSIDERATIONS 7'

6. 1 The restricted Polyhedron and the Primal Method V

6. 2 The Parametric Variables as a System of Coordinates 71

6.3 Inverse Pivoting 8]

6. 4 Natural Inequalities 8!

6.5 Deepest Cuts and Hierarchical Rules 8(

6. 6 Geometric Considerations of Two-Dimensional Convergence i

CHAPTER 7 - SUGGESTED EXTENSIONS

7. 1 A "Tight" Algorithm 4
7. 2 Fractionalization of Variables and Mixed Integer LP 92

BIBLIOGRAPHY 94

APPENDIX A - Some Considerations about the Lexicographical 97
Simplex Method

APPENDIX B - Lexico-Minimization as a Procedure for Implicit 101
Tableau Reduction

BIOGRAPHICAL NOTE 103

-vi-

CHAPTER 1

INTRODUCTION

1. 1 The Integer and the Mixed Linear Programming Problems

An Integer LP problem is a linear programming problem in which

all the variables are constrained to take non-negative integer values. In

a mixed LP problem some of the variables are constrained to be integer,

while the rest are continuous. Both problems have in common that at

least one of the variables is discrete. We can cover both problems

by talking about LP with discrete variables, or discrete LP.

Discrete LP is important because there are many practical prob-

lems in which some of the Variables are actually discrete; for instance,

problems dealing with the nuinber of flights, machines, men, or some

other indivisible ur't. If a problem of this type is attacked by solvi-g

the LP problem as non-discrete and by adjusting the solution thus ob-

tained (so that it will fulfill the discreteness requirements), it might

occur that the adjusted solution is far from optimal for the discrete

problem. In many situations it will be profitable to use more refined

methods so that the optimal solution is found.

Another reason why discrete LP is important is because logical

-I-

relations may be expressed by means of Boolean variables (variables

that can only take one of the values 0, 1), and thus some logical con-

straints can be incorporated in the definition of a problem. There are

many combinatorial problems that can be formulated as discrete LP

problems by using integer and Boolean Variables.

1. 2 Available Integer LP Algorithms

In this section we give a brief description of the integer LP al-

gorithms that are currently (May, 1965) available in the general liter-

ature of Operations Research and Management Science. Most of these

algorithms use, in one way or another, the "cuts" originally discovered

by R. E. GOMORY (refs. [4], [5]and [6]. These "Gomory-cuts"

(or "Gomory inequalities") are secondary conotraints that are implied

by the set of original inequalities and by the discreteness of the vari-

ables. Gomory inequalities will be analyzed in the next chapter.

The first algor".hm by Gomory [4] [5] uses the simplex tech-

nique to obtain the solution of the non-discrete problem. If any vari-

able turns out to have a non-integer value a secondary con3traint is

generated. When this constraint is added it puts the problem in a

"dual feasible, primal infeasible" form, and the dual simplex method

is used to obtain a new optimal solution. If there are still some vari-

ables with non-integer variables, the procedure of generating a cut and

-2-

re-solving is repeated until an all integer solution is found. The algorithm

is shown to converge to the optimum in a finite number of steps.

The second of Gomory's algorithms [61 uses only integer coeffi-

cients to express all the inequalities and produces all-integer solutions

throughout the process; but these solutions are not primal feasible because,

together with the cuts, a dual simplex method is used. Thus, no feasiLle

solution is obtained until the optimum is found. Convergence is assured

if certain rules are followed.

The algorithm by GLENN T. MARTIN [8] is similar to the first of

Gomory's algorithms, with the difference that the cuts that Martin gener-

ates are better (they go "deeper") and so he uses less iterations to get to

the optimum. But as in the first case, no feasible all-integer solution is

obtained until the end.

RICHARD VAN SLYKE AND ROGER WETS [111 have approached

the problem of improving performance of integer LP algorithms by study-

ing the way of easily generating efficient cutting planes. They handle

this by using a triangular canonical form. A brief outline of their algo-

rithm is given in their paper and the relationship with Gomory's algorithm

[6] is examined.

FRED CLOVER has studied in [2] the effect of different heuristics

upon the performance of Gomory's All-Integer Integer LP Algorithm [6]

In particular, he has developed the NOT (New Origin Technique) heuristic,

-3-

which by means of the simplex algorithm provides a better starting

point for Gomory's algorithm. In his second paper (3], Glover develops

another approach for solving integer LP problems. An integer matrix

is transformed into another integer matrix that exhibits certain substruc-

ture called bounding form. This substructure is operated upon and lower

bounds are found for a subset of the variables. This infzrmation and the

successively derived problem matrices are used in conjunction in order

to guarantee finite convergence for the solution of the original problem.

Again, no feasible solution is obtained until the end.

More recently, G. L. THOMPSON [10] has developed a solution

enumeration approach that is charactarized by: a) use of the number

theoretic properties of the objective function to obtain a convenient

transiormation of variables, b) application of a multidimensional search

procedure whose memory requirements vary only linearly with the size

-of the problem. Because of the way in which this search is conducted,

a feasible solution is found only when an optimal solution is found. His

method seems to be more efficient than Gomory's [6 1 ; furthermore, it

can also be applied to mixed integer LP problems.

Thus no algorithm, of the ones presented so far, works on the

principle of improving upon feasible integer solutions until the optimal

solution is found. ADI BEN-ISRAEL and A. CHARNES [1] propose a

Direct Algorithm that has this motivation. Their algorithm has in commor

-4-

with ours the fact that they use the type of Gomory cuts which we call

"non-zero natural inequalities". However, the Direct Algorithm has a
I

very important shortcoming, which is that at certain stages an "Auxiliary

Problem" has to be solved.. This auxiliary problem is an integer LP

problem that might be as large as the original problem; but they do not

offer any systematic method for solving it, other than obtaining the solu-

tion of its continuous counterpart and "interpolating" from itI an integer

solution. The process of interpolating is not explained. Th Direct

Algorithm does not seem to be practical except for small problems; as

a matter of fact, no computational results are reported.

1. 3 Our Results

A) A primal feasible (all-integer) integer LP algorithm has been

eveloped and programmed; it has the important characteristic that ati

ny stage of the computation one always has a feasible integer solution.

Chapter 2)

B) A procedure for obtaining a first feasible solution has also been

developed and programmed. In this formulalation we do not need addi-

tional variables or constraints as is usually necessary. Of special interest

is a technique that takes advantage of any original equalities in order to

reduce the size of the problem. (Chapter 3)

C) A proof of finite convergence of the primal algorithm, when

i -5-

applied to two-dimensional problems, has been found. (Chapter 4,

section 4. 2)

D) We have not established the finite convergence of the algorithm

in the general case. Although this is disappointing, computational

experience with other algorithms that are known to converge is not

entirely satisfactory. A certain fraction of problems tried do not con-

verge in any tolerable amount of time. From a practical point of view,

then, the actual performance of an algorithm on the computer would

appear to be its most important test. In this respect, the experience

so far is that our algorithm is competitive with other algorithms.

Because of the convergence difficulty that exists with all integer LP

algorithms, the primal feasible property seems particularly desirable.

There is no other programmed primal feasible algorithm that we know

of. (Chapter 4, sections 4. 3 and 4. 4)

E) A class of Generalized Euclidean Algorithms, for finding the

greatest common divisor of more than two numbers, is defined. Con-

cepts of integer LP are applied to the problem of obtaining the general

solution, and of generating non-negative solutions, of systems of linear

diophantine equations. (Chapter 5)

F) Georetric considerations that throw light on the workings of

the algorithm are examined. Of special interest is a technique (inverse

pivoting) for expressing the relevant Gomory cuts explicitly in terms of

-6-

the original variables at each stage of the algorithm. (Chapter 6)

G) Finally, some specific extensions are suggested. (Chapter 7)

-7-

CHAPTER 2

A PRIMAL FEASIBLE ALGORITHM

It is the purpose of the present chapter to develop a primal feasible

algorithm for solving the integer LP problem. Before giving the outline

of the basic algorithm we will introduce the necessary notation, present

some basic properties of the tableau representation and discuss the spe-

cial constraints called "GOMORY inequalities", which are essential for

our algorith.n.

2. 1 The Problem. Notation

Our notation will be similar to the one used by Gomory in

references [5 land [6].

We will consider the problem of finding integers x. (j = i,..., n)
3

that maximize

n

Z a o + a 3 , j (-x) (2.1.1)

j=l

subject to

-8-

n

a. {x) < a,, i = (2. 1.2)

j=1

and to

x. J 1,..., n (2. 1.3)J

where all the coefficients and constants are integers.

By introducing the non-negative slack variables s. and by using the1

parametric variables t. we can express the problem given by (2, 1. 1),

(2. 1. 2) and (2. 1. 3) as follows:

Maximize z

n

with z a0 ,0 + a 0 , (-t.) (2. 1.4)

j=l

n
s =a i,O0+ __ a,, j (-t.) =1.. m

j=l

x. = - 1 (-t.) j = P,..., n3 .3

where the s. and the x. are non-negative integer variables, z is an1 3

unsigned integer variable, and all the coefficients and constants are

integers.

-9-

In matrix notation we would have:

Maximize z
A0T0 A0

with X = A (alp " n)

W

z 1

S -tz
.t "t2

s T O

m
xI
.i (2. 1.5s)

x -t
n n

.th
where a. is the j 3 column of the (mn + n + 1) by (n + 1) matrix formed

with the constants and coefficients of (2. 1. 4), and where the same

specifications apply.

The representation of the problem as given in (2. 1. 4) or in (2. 1. 5)

is the parametric representation due to A. W. Tucker and it allows one

to express every constraining variable and every variable "of interest"

in terms of a 'Ret of non-basic or parametric variables t.. (In the

notation of (2. 1. 4), the s. and the x. are constraining variables -and1 3

also of interest- but z is not constraining, only of interest). Because

of the way they have been defined, these parametric variables are also

constrained to be non-negative and integer.

-10-

The relationships given in (2. 1. 4) can be expressed by means of

a tableau of the following type:

1-t 1 -t

a0,0 a0,1 " a0, n

s = a 0 0
m 1 a m, 0
Xl= am+ l, (2016

x =a *n, * . a.
n m+n0 m+n,n

2. 2 Pivoting. The Simplex Criterion

By using Gaussian elimination we can change the set of non-basic

variables (i. e. the parametric variables), thus expressing the left hand

variables in terms of different sets of parametric variables. In partic-

ular, if we want to exchange t,0 by si0 we pivot on the element

ai0 , j0 * This means that we change the tableau according to the follow-

ing formulas:

a! = - (a. /01ai0,) i 0, i,..., m + n
It A i'jO iO'jO

a! = a - a .(a /a j 0, 1, n; j * jOit j 2, j i0,j i, jO io, jO

(2. 2. 1)

-11-

th
This is equivalent to solving for t in the iO equation and

replacing this result for t into the other equations. (The marginal
j0

labels "so " and "*t " exchange places on the outside of the tableau).

In vector notation, formulas (2. 2. 1) become

1-a jo (1/a po)

a j = j - ajO (ai 0,j/ai 0 , j0) J = 0, l,..,,n; j jO

(2.2. 2)

Our basic algorithm will always pivot on rows that will be added

to the bottom of the tableau; so that the vertical set of marginal labels

(i.e. z to x) will always remain the same.

The current solution is the vector of values that are obtained if

every parametric variable is set equal to zero; in other words, it is the

column vector a 0 = (ao, O 1 , .. , m+n) The value of the solution

is the value z , that is, a0 , 0 " A tableau is in primal feasible forrr

(and the so lition is said to be primal feasible, or simply, feasible) if

every non- gative variable has a non-negative value, that is, if

ai > 0, i ,.. . m + n . A tableau is said to be in dual feasible

form if ao j > , j=,..., n when we are maximizing z , or if

a j 4 0 , when we are minimizing z.

A column a " is lexicographically positive (cj> 0) if its first ele-

ment, counting from the top down, is positive. Column :* is (lexico-)
I

larger than column a. if a. -a.> 0. From now, when we refer to the
1 3 1

1 , -12

sign of column, unle us otherwise stated, it is to be understood in this

lexicographical sense.

A tableau is said to be in lexico-dual feasible form if every column

is positive (except, perhaps, column zero) when we are maximizing, or

if every column is negative when we are minimizing.

If the tableau is both primal and dual feasible it means that the

objective function has attained its optimal value and the current solution

is one of tha optimal solutions (see Appendix A). If the tableau is both

primal feasible and lexico-dual feasible it means that the lexico-optimal

solution has been found. That is, the lexico-largest feasible solution

has been fouid if we are maximizing and the lexico-smallest if we are

minimizing (see Appendix A). In either case we say that optimality has

been shown or proved in the latter case we also say that lexico-optimality

has been proved.

The purpose of pivoting is to bring the tableau into an optimal

form. We may start with a primal feasible form and try to attain dual

feasibility by appropriate pivoting (while maintaining primal feasibility),

or we may begin with a dual feasible form and try to attain primal

feasibility (while maintaining dual feasibility). The first technique is

usually called a (primal) simplex method, and the second one a dual

simplex method. If instead of trying to attain, or to maintain, plain

dual feasibility, we try to attain, or to maintain, lexico-dual feasibility,

-13-

we will have a lexicographical simplex method, and a lexicographical

dual simplex method respectively.

In Appendix A we present an example that shows that it is necessary

to use a lexicographical simplex method in our basic algorithm, rather

than a "plain" simplex method. Whenever we mention the simplex

method in the rest of this paper, we will be referring to the lexicographical

simplex method, unless otherwise stated. Also, we will usually assume

that the objective is to maximize.

If the pivoting element is ai0, j 0 , row iO is called the pivoting

row and column jO is the pivoting column (column zero is not considered

for pivoting).

When using the simplex method we will pivot on negative columns

if we are maxirmizing, and we will pivot on positive columns if minimizing.

The reason for this will be clear below.

Assume we have chosen a column, jO , for pivoting; the simplex

method criterion ior choosing a pivoting row iO , is then the following:

Let I be the set of indices i , i* 0 such that a i, j0 >0 . Choose

iO so that:

(ar/a min {a. /a (2.2.3)
ai0,O0Oai0 J0) iel iO i j0

If the set I is empty and we are minimizing, it means that the

-14-

objective function is unbounded. If we are maximizing, it eithex means

that the objective function is unbounded (if a0, jO < 0), and/or that some

of the problem variables are unbounded (for further discussion see section

4. 1 and Appendix A).

The simplex criterion for pivoting guarantees that the solution will

stay primal feasible if it is already primal feasible.

If we are maximizing, the column vector a 0 will be (lexico-

graphically) non-decreasing because a io 0 , aio,jo >0 jO

and from (2. 2. 2)

a a0= 0 a j (ai 0 , 0 /ai0,0) 1 a 0

If we were minimizing we would choose a. > 0 and a 0 would bej0

non-increasing

For further details on the basic theory of linear programming see

any standard textbook such as, Hadley, G., Linear Programming,

Reading, Mass., Addison-Wesley, 1961.

2. 3 Gomory Inequalities

As mentioned before, most of our results make use of the G.mory

Inequalities (or Gomory cuts), w'hich were first developed by Gornory and

now bear his name. In order to make our exposition more self-c.)nt4ained

we will reproduce here, in a slightly modified form, the proof of Ben-Israel

-15-

and Charnes for the Gomory Inequalities (from [1)).

Ben-Israel and Charnes Theorem

For any real number x let

[x] denote the largest integer < x

<x> denote the smallest integer > x

nnAlso, let L denote the set of integer vectors in E n and E + the

set of non-negative vectors in E .

Ben-Israel considers inequalities of the type

a x. 4a 0 (2.3.1)
jI 1j=l

and shows that integer vectors x = (xl,..., x) which satisfy (2.3. 1) lie
n

in a closed half-space which depends on (2. 3. 1) but always contains E+

satisfy other constraints which will be called Gomory Inequalities.

For this, the coefficients in (2. 3. 1) are decomposed, for any real

number p > 0 , into their integral and fractional parts as follows:

a. = p [a,/P] + f, i = 0, i,..., n (2.3.2)

where 0 Af <p

Theorem (part [a]):

Let p be any positive real number and f. as defined in (2. 3. 2)
1

-16-

If x e L satisfies (2Z. 3. 1) and

f 0; (2. 3.3)

then

n

1=1

Proof

Rewrite (2. 3. 1) as

n n

[a /P]x f x <p [a /P + f (2.3.5)

now there are two possible cases:

Either

-f. x f0 (2.3.6)

in which case (Z. 3. 4) always holds regardless whether x e L or not, or

else

n0

-17-

in which case we use the following inequality which always follows from

(2.3. 5), upon dividing by p , and taking integer parts on both sides:

n n

i /p] xi + (I/p) f i x1 4 6 0 /p] + f0 /p (2.3.8)

i=1 i= l
n

Now, since x e L, a ai/p] x. is an integer and, using (2. 3.3),

i=l
(2: 3.7), and the fact that 05 f f0 < p , we finally obtain (2.3.4). This

proves part[a] of Ben-Iorael and Charnes Theorem.

The second part of his theorem is actually a corollary of part [a]

as we will presently show.

Part [b] states

Let p be any positive real number, and let g, be defined by

bi = p <b/p> gi i= 0, 1,..., n (2.3.9)

if x e L satisfies

n
b. x. b b0 (2.3.10)

i=1

and

n

gi x i - 0 (2.3.11)

i=l1

-18-

then

n

I (b./p ' x. / <b0 /p) (2.3.12)

i=1

We state that part[b] is a corollary of part [a]

Proof

Let us define b. as1

b. = "a i=O, i,..., n (2.3.13)

We will make use of the fact that for any real number c this holds:

[c] =' <-c> and [-c] (c) (2.3. 14)

We can rewrite (2. 3. 2) as follows

-b. = p [-bi/p] + f. i = 0,..., n (2.3.15)

then, by (2. 3. 14),

b. = p (bi/p) - f. (2.3.16)

we see that (2. 3. 9) is met if we define

gi = fi i=0,..., n (2.3.17)

Relationship (2. 3. 1) may be rewritten as

n

I (-b i) x i :s -b 0 (2.3.18)

i=1

-19-

from which (2. 3. 10) follows.

Also, (2.3.11) follows from (2.3.3) and (2.3.17).

Finally, (2. 3.12) is obtained from (2. 3.4) by rewriting it as

I [-bi/p] x. 5 [-b 0 /p]
1=1i=l

and, by (2. 3.14)

n

- b./p) x :- (b 0 /p)
i= 1

We have thus proved that part [b] of the theorem is implied by

part [a] . (The converse is also true).

Part [a] of the theorem is due to Gomory [6] but instead of

condition (2. 3.3) he has the stronger condition that x e E. He proves

the theorem for the cases p = 1 , and p > 1

Thus, we have proved that any Gomory cut generated from some

constraint s is satisfied by every non-negative integer vector x that

satisfies s . Whenever we have an integer LP problem defined by a set

of constraints we could add any number of Gomory cuts as generated from

the original inequalities, and the expanded set of inequalities would still

be feasible for (satisfied by) the same set of non-negative integer vectors.

-20-

Gomory Cuts in Tableau Notation

In the tableau, the ith row is

n

1 , 0+ a, j 0

j=1

and is equivaletut to

n
Sa. *t. a.

a, j i i, 0
j=1

its Gomory cuts will be:

n

i, j a0,0

j=1

or

n

b.t 4b 0 (2.3.19)

j=1

where

b. = ai, j/p j=0, ,..., n (2.3.20)

All the coefficients and variables of (2. 3. 19) are integers so that

-21,-

/

if we introduce a slack variable r , it will be both non-negative and integral

n

r b + b (-t.) (2.3.21)

j=1

* The cut (2.3.19) or its equivalent (2.3.21) may be added to the

original constraints by adding to the tableau another row with the coefficientl

(bo, bl,..., b)

If this added row is used as the pivot row, the pivoting formulas

(2. 2. 1) will be changed into:

a! =a. (I /b~j0a30 - " l/j0

a! = a a. (b j = 0, .. n; j jO (2.3.22)j n O ""/b "

A Gomory cut will be called a non-zero-cut if b0 # 0 and a zero-

cut if b 0 = 0.

In the next section and in the following chapters we will study

further the theory and the application of Gomory cuts.

2. 4 Development of the Basic Algorithm

We want to develop an "All-Integer Primal Feasible Integer LP

Algorithm". This means that we want the current solution to always be

(primal) feasible and integral; furthermore, we want all the coefficients

-22-

to remain integral.

If the starting solution is feasible and all the coefficients are integer,

feasibility can be reserved by using the simplex criterion for pivoting; and

integrality of the coefficients can be maintained by having the pivoting

elements equal to 1 (see (2.2.1)).

In general, it is not always possible to find pivoting elements that

satisfy the simplex criterion and that have, at the same time, a value of

I . However, such a pivoting element may always be obtained by properly

generating a Gomory cut and appending it to the tableau, as will be shown

below.

Row iO is pivotable on column jO if ai0 ' j0 > 0 . Let I be the

set of rows that are pivotable on column jO . A pivotable row iO is

most-binding on column jO if it satisfies the simplex-like criterion:

ai0,0/ai0, j] = min {ai, 0 /a i,lj0 (2.4.1)
ieI.o

JO

If aj < 0 and if row iO is most-binding on column jO , we may

generate a cut from row iO by letting p = a . This cut may be

appended to the tableau and its element bj may be used as the pivoting

element. (Row iO will be called the generating row, and ai0 , j 0 will be

the generating element). The generated cut will not only satisfy (2. 4. 1),

but it will also satisfy the simplex criterion (2.2. 3). Furthermore, the

-23-

pivoting elernent b will be equal to 1 (as may be checked from its
jo

definition (2. 3. 20)), and the pivoting formulas (2. 3. 20) may be simplified

a'jo = jo

a'. = a o b j= 0,..., n; j /jO (2.4j j'ajo j

These new formulas show that the integrality of the tableau elemen

will be preserved upon pivoting.

If some row i is pivotable on column j and it has a > a. itI i ,O

will h Ve (ai, 0 /a i,J = 0 and it is clear that it will be most-binding on

column j. Even more, we say i is zero-binding because a zero-cut coul

be generated from it.

Considering column j, if there is at least one pivotable row and if

none of the pivotable rows is zero-binding we have a breakthrough becaust

we can generate a non-zero-cut (the breakthrough is in the maximizing dii

tion if a. < 0). If there is no pivotable row on column j (and if a. < 0) th,13 J

the prcblem has an unbounded solution (which is another type of breakthro.

The Basic Algorithm (Maximizing Version)

A - If there is a breakthrough in a negative column jO , select suci

a column for pivoting. If no negative column has a breakthrough take somt

negative column jO for pivoting. (If there are no negative columns the

tableau is optimal).

B Having chosen jO , take one of the most-binding rows on colum

-24-

jO as the generating row iO (if there is none, the problem is unbounded).

C - From row iO generate a Gomory cut with p = ai0 , jO and add

this constraint to the bottom of the tableau.

D - Pivot on element b of the added constraint and erase the

constraint after having pivoted. Go back to A.

The basic algorithm assumes that the tableau is in primal feasible

form and that all the coefficients are integer. Also, it does not specify

how to choose a pivoting column from several proper candidates, or how

to choose a generating row when there are several most-binding rows on

the pivoting column jO . These matters will be discussed in Chapter 4.

If we want the algorithm to be minimizing we only have to require that

the pivoting columns be positive.

In the process of solution there will be an improvement in the

solution vector a 0 whenever a breakthrough is found and used. Going

from one breakthrough to another constitutes a major iteration. But in

order to obtain a breakthrough it might be necessary to perform several

pivots with zero-cuts. Every pivot, whether it is done with a zero-cut

or with a non-zero-cut, is a minor iteration (or simply, iteration). Thus,

a major iteration requires a number of minor iterations.

2. 5 An Example

We will solve here the example given by Martin in [8]

-25-

max z = 2x + 3x2

with 2xI + 5x2 < 8

3x + 2x < 9

1 2

Introducing the slack variables and putting the problem into the

tableau form:

-x -x
1 2

z = 0 -2 -3 The arrows show the column jO and the

' = 8 2 50 row iO . The dot (a) marks the element

a2 = 9 3 2 p =5 a., jO and the asterisk (*) marks the

x = 0 -1 0 pivoting element in the added constraint.

x = 0 0 -1

rI = 1 0 1*

Pivoting and repeating the process:

I -x1 -rI 1 -r 2 -r1 1 -r 2 -r 3 I 4 "r3

z=3,-2 3 z 5 2-3 Z 5 -1 3 z 6 2..

31 2 0 5 's = 1 -2 1 sI = .-2 sI2 -2 Op

s2 =73 -2 s2 4 -3 7° O6S2= 4 4 -7 s 2 0 -4 -3

x = 0 -1 0 x= 1 1 -3 x,= 1-2 3 x = 3 2 1

x2 = 1 0 1 x2 = 1 0 1 x2 = 1 -1 x2 = 0 -1 0

r 2 = -1 3 r 3 = 0 -1 1* r 4 = 1 1* -1

The optimal solution is x, =3, x2 =0, z = 6.

-26-

CHAPTER 3

OBTAINING A FIRST FEASIBLE SOLUTION

3. 1 Different Types of Variables

Every row of the tableau corresponds to an expression that gives

a certain variable in terms of the (current) pa':ametric variables. The

variables thus expressed will be called row variables and the;y include che

objective, the slack variables, and the problem variables. The constlaints

of the original integer LP are denoted by the fact that some (or all) of

these row variables are constrained. Four types of variables will be

studied: unsigned variables, non-negative variables, zero-variables and

bounded variables. In addition, the concept of objective variiable will be

discussed.

3. 1. 1 Unsigned Variables

An unsigned variable is a variable that is not, p se, necessarily

constrained in sign. The most common case of unsigned variable is the

one corresponding to the objective function, but in some problems there

might be additional unsigned variables that are pertinent to the formu-

lation of the problem. The treatment of rows corresponding to unsigr.ed

variables is simple; they are not considered as candidates for generating

-27-

cuts, but the corresponding coefficients are transformed by means of

the pivoting formulas (2. 4. 3) as are those of any other row. Unsigned

variables are always considered to be feasible, of course.

3.1.2 Non-negative Variables

A non-negative variable may be of any of two types: a slack variabl

that was introduced to change an inequality into an equality, or an origins

problem variable that was required to be non-negative. Non-positive

variables are not considered here because they can be converted to non-

negative variables by a simple change of variable. A non-negative

variable s. is feasible if its current value, ai 0 , is non-negative. The

row corresponding to a non-negative variable will be a candidate for

generating cuts only if it is feasible (for an exception see section 3.2).

3.1. 3 Zero-Variables (The Treatment of Equalities)

One way to deal with equalities in linear programming is to

represent them by means of opposing inequalities (for instance, ax = b

cx = d maybe represented as ax c b , cx 4 d, -(a+ c) x- (b + d)).

IAs far as we know, this has been the usual approach in integer LP

We have used a different approach.

1 See, for instance, Giglio, R. J. and Wagner, H. M. "Approximate

Solutions to the Three-Machine Scheduling Problem", Operations

Research, v. 12 (1964), pp. 305- 324.

-28-

Take the following equality:

n
ax. (3. 1.1)

a i a0
i=l

Let us introduce an artificial variable s and put (3. 1. 1) in the

following form:

n

s= a0 + ai (-x)
i=l1

It is obvious that any set of x.' s that satisfy (3. 1. 1) (that is,1

any set of feasible x.' s), will make s equal to zero. We call s a1

zero-variable because it is constrained to be zero; that is, s is

feasible only when its value is zero. Furthermore, a variable of this

type is an explicit zero-variable since we explicitly know its nature

from the problem formulation.

If, after several pivots, a zero-variable row has only one non-

zero element a. , j 0 , this means that s. = a.. (-t.), so that
1,j 1 1,3 3

the only feasible value of the parametric variable t. is zero. If this3

is the case we might as well make t. = 0 which is equivalent to erasing3

the column corresponding to t. , thus reducing the width of the tableau.

Furthermore, if after erasing a column there are one or more rows

that have only zero elements, (except perhaps in column zero), we may

-29-

also erase these rows if we take care of storing somewhere the current

(and final) values of the corresponding row variables. The justification

for this is that if every element a.. , * 0 , of row i is equal to

zero, then there is no way in which a. could change by pivoting (wei, 0

would always have a.i, j0 = 0 in the pivoting formulas (2. 2. 1)).

This reduction of the tableau is of course equivalent to using the

equality in question to solve for one variable in terms of the others, and

to substitute this expression in the other constraints so as to reduce the

dimensionality of the problem. The algorithm for finding a first feasible

solution will do this for us, automatically.

But this is not the only way to reduce the dimensionality of the

problem. Because of the special nature of integer LP problems, even

if there are no equalities in the formulation of the problem, in many

cases the dimensionality of the set of feasible integer solutions will be

smaller than the dimensionality of the space of feasible continuous

solutions. Thus, in the process of solution of a problem we may find

out that some of the parametric variables become, in fact, implicit

zero-variables. If this situation occurs and we are able to recognize

it, the tableau can be reduced. The following lemma gives the basic

rule for recognizing implicit zero variables.

Lemma 3.1: If there is a row i such that a. 0 , j = 0,

-30-

1,..., n, and this row corresponds to a non-negative variable, then

every column j with a isj > a 0i, corresponds to an implicit zero-

variable.

Proof: Let J = {iI 0 < a. - ; j = 1 n) and J =
-------- X j i, 0 ""'

(jj a. > a, ; j = 1, nI . Let us assume that J+ is not empty

so that the lemma applies. Because row i corresponds to a non-

negative variable the row represents the following coistraint

~i a" t' + a". t. < a
a J + + 1, j j ai,0

jEJ jJ

A cut can be generated by letting p = min {a. the coefficients of
jEJ 1 ,

the cut will be:

b 0 [ai, o/p] =0

>I if jEJ
b.=[a. ./p]3 13= 0 if i J"

The Gomory cut is then: bt b 0 = 0 with b. I for jE J+

if J J J

But since -11 the parametric variables t. can be constrained to be
3

non-negative (without losing feasible solutions to the original problem)

then the only feasible value for the variables t. , it J+ is zero. Thus,

t. = 0 , t J+ , implies that this set of parametric variables are zero-
j

variables and their corresponding column may be erased in order to

-31-

, - iIll

reduce the tableau. Q. E. I

A final remark about zero-variables: a zero-variable is at the

same time a non-negative and a non-positive variable, and we may

consider it so whenever it is convenient.

3.1.4 Bounded Variables

Many of the practical problems formulated as integer LP problems,

involve the use of variables that are constrained to be either zero or one;

these variables are sometimes called Boolean or decision variables.

Generalizing this concept, let us assume that the integer variable x. is1

bounded as follows 0 4 x. - M. (where M. is some positive integer).1 1 1

This requirement could be expressed with two separate rows of the tableal

one row would express x. > 0 and the other one would stand for1

5
x. -M. -x. >0.1 1 1

But it is possible to express both constraints with a single row (this

saving computer memory). If we have the constraint

n

x. a a. +_I a. (-t 0

j=l

we can compute the counter-constraint

n5
1. 1M .. + (-a. .(.)0x. =(Mi - i, 0 + i, j

j=l

-32-

Thus, the slack variable x. is feasible if M. ai, 0 When

x. is feasible, it will be binding on column j if a. < 0 ; whereas x.
1 1,3 1

when feasible, will be binding on column j if a > 0

In order to handle a bounded variable it is enough to state its non-

negativity, the value M. , and the fact that the variable is bounded (an

arbitrary label would be used to specify this in the computer program).

For analytical purposes we will think of it as two separate non-negative

variables.

3.1.5 Objective Variables

Any variable, whether unsigned, non-negative or zero-variable,

can be considered to be the problem objective at any stage of the process

of solution of a given problem. The motivation for doing this will be

discussed in the next section.

If we are taking s. as the current objective function we will1

consider its row as the zeroth row, that is, as the topmost row. (The

order of the other rows should be specifically assigned, but the criterion

for assigning the order is unimportant, as long as the rows retain their -

ordering). If s. is being maximized, only lexico-negative columns will1

be considered proper candidates for pivoting. If there is no negative

column it means that s. cannot be maximized further. (If s. is being
1 1

minimized only positive columns are considered for pivoting).

-33-

3.2 Finding a First Feasible Solution

Before proceeding to optimize the original objective function, we

require that the tableau be in a (primal) feasible form. There are two

types of infeasibilities that we want to remove: a) zero-variables with

non-zero values, b) non-negative variables with negative values. It

seems advisable to make the zero-variables feasible first so that we

may reduce the size of the tableau as soon as possible.

One way to deal with zero-variables that are not feasible is the

following: Let us assume that s. is a zero-variable and its value is1

a , 0 > 0 (if a. < 0 we could multiply the row by -1 and work with

s! (s! = -s.) which is also a zero variable). We will consider the

problem defined only by those rows corresponding to non-negative

variables that are already feasible, and we will try to minimize s.1

subject to s. 0 , that is, considering row i itself as a constraint.1

To do this we apply our basic algorithm to the subproblem; that is, we

pivot in such a way that the non-negativity of the subproblem variables

is preserved while we seek to bring the value of s. down to zero. Thus,1

we will pivot only in columns that are lexico-positive in the subproblem.

If there is no such a column for the row i under consideration, and if

a. > 0 , this means that no feasible solution exists for the original1, 0

problem. (The solution space of the original problem is contained within

the solution space of the subproblem; hence, if the subproblem does not

-34-

have any feasible solution neither does the original problem).

If we want to reduce the tableau by eliminating the zero-variable

we will not be satisfied with driving its value down to zero. We have to

continue pivoting in such a way that row i will eventually have only one

non-zero element. This will be accomplished in a finite number of steps

as will be shown next.

Lemma 3. 2: If we generate a Gomcry cut from row iO , using

P = I ai 0 , j 0 j * 0 , and we pivot on column jO of the cut, the new elements

of row iO will satisfy the following: a! 0 ,jO I a ,O jo

0 -<a!' <I a j , j0 . That is, every element of row iO willbe
10, j io, jo

non-negative and smaller than I ai 0 ;JO except the element on column

jO , wbich will be negative and equal to - ai0 , j 0 .

Proof: We have defined [c] to denote the largest integer smaller

than, or equal to c . Thus, if b # 0 , the following holds:

0 < (a/b - [a/b]) < I

If b>Owe have

O 4 (a - b [a/b]) < b

or

O (al b) < b (3.2.1)

where (al b)-a-b[a/b] b> 0 (3.2.2)

-35-

This property will be used to prove the lemma.

The cut generated fiom row iO with p a , j o I will have the

following coefficients:

b= [ai 0 , j /I a 0, 0] J=0,..., n

There may be two cases: a > 0 ,or a 0 0< 0. If a. 0 > 0

the pivoting formulas will be those of (2. 4. 3), and specifically for

i = iO , we will have:

a I -a 0 0 -" I aD ' j01

a' =a -a b. = - a..ol [ao,j a..I I
iO,j i0, j ai0,jO i a - i0,j0 aiO,jO

j 0,.,., n j*10

If ai0,j 0 < 0 , we will have biD = -1, and ao,j =- ai0 ,jOl . We can

obtain the pivoting formulas for row iO from (2.3.22), that is:

a!o, jo = a, jo = " aio ' jo I
a!a0, j ' 0, j +a, j0 b a a (a

j iO,j iO' iO'j io'

j n j jO

Thus, in either case we have the same pivoting formulas for row iO

and by comparing them with (3.2. 1), we see that Lemma 1 is indeed

satisfied. (Q. E. D.I

Lemma 3. 3: If we have a row i with ai 0 = 0 , we can reduce it.

-36-

in a finite number of steps, so that only one non-zero element will remain.

Proof: The way to obtain this reduction is to use only positive

elements of row i as generating elements. (If initially there are no

positive elements in row i , w! may use any of the negative elements as

generating elements. From Lemma 3. 2 we see that the other elements

of row i will become either positive or zero. If at least one of them

becomes positive we may apply the rule given above. If they all become

zero then Lemnia 3. 3 is already satisfied.)

By always taking positive generating elements from row i , we

are assured by Lemma 3. 2 that they will always be monotonically

decreasing. But they cannot decrease forever because they are positive

and they decrease by integer amounts. Thus, after a finite number of

iterations there will-be no more positive elements in row i . The only

way this may happen is if every element is zero except the one that was

used last as generating element, as may be checked from Lemma 3. 2.

This proves Lemma 3.3. (Q.E. D.)

The procedure for row reduction will be accelerated if the smallest

of the positive elements is chosen each time as the generating element.

When the row of a zero-variable is reduced so that it has only one

non-zero element a.. , j # 0 , we know that the parametric variable

associated with column j is a zero-variable, and we may erase this

-37-

column, thus reducing the size of the tableau.

Once we have eliminated one zero-variable we take another one

and repeat the procedure until there are no infeasible zero-variables.

Then we may turn our attention to removing the infeasibility of non-

.. negative variables, if there is' any infeasibility of this type.

We have said that in removing the infeasibility of one zero-
I

variable the pivoting is done in such a way that the variables that are

already feasible, remain feasible. This would, Rerforce, slo own

the process of removing that infeasibility and of reducing the tableau.

Another strategy would be to concentrate *educing the elements of

the row and in eliminating the zero-variable, without worrying whether

any other variables become infeasible. This would bring about a faster

reduction of the tableau, and once it has been reduced it might bq more

efficient to worry about the other infeasibilities. The desirability of

on ethod versus the other is, perhaps, mostly a matter of computer

pro ramming, and we will not discuss it further.

In order to remove the infeasibility of a non-negative variable

s. (assuming that a 0 < 0) we consider again the subproblem formed

with those rows that are already feasible, and having as objective the

maximizing of s. . Only those rows that are (lexicographically)1

negative within the subproblem will be considered for pivoting. If,

-38-

at some stage, there is no such a column, and if a. < 0 , this meansiO

that s. cannot reach a non-negative value in the subproblern, and1

therefore there is no feasible solution of the original problem. If the

subproblem is unbounded in some column j (such that a.. < 0) , we

can then generate a cut from row i by letting p = I a. I . The Gomory

cut will have b 0 < 0 and b. < 0 and after pivoting on b. , ai,0 will be

non-negative (this is the type of cuts that Gomory uses in [61).

But whether or not such unboundedness is found, the idea is to

improve s. until it becomes non-negative, and at the same time to1

maintain feasibility in the subproblem. The variable s, does not have to

be optimized in the subproblem; as soon as it becomes non-negative we

take another infeasible variable as our new objective, if there are any

left (in the process of "satisfying" a certain non-negative variable, some

other variables may alo be satisfied).

When every variable is feasible we take the original objective of

the problem and we proceed to optimize it, preserving the feasibility.

This technique for finding a first feasible solution has been

incorporated in our algorithm and it has been programmed for the IBM 7094.

Its convergency depends, of course, on the convergency of our basic

algorithm.

The ideas behind this approach are not exclusively for integer

-39-

linear programming, but they can also be applied, with proper modifica-

tions, to regular linear programming.

-40-

CHAPTER 4

THE PROBLEM OF FINITE CONVERGENCE

4.1 Considerations about Convergence

As mentioned in Chapter 2, in applying the basic algorithm there

will be major iterations (breakthroughs) and minor iterations. Every

time a major iteration occurs, the solvuion vector (column a 0) increases

lexicographically.

If we are using the maximizing version of the basic algorithm, we

have the following theorem:

Theorem 4. 1 If the problem is bounded in every direction, there

can only be a finite number of major iterations.

Proof I : A sequence of major iterations will produce a sequence of

columns a s that will be in lexico-increasing order and which will be
0

bounded above by x , the lexico-largest feasible solution:

0 11 21 -1 0
a0<a0< < 0 < <x

1 This proof follows to a certain extent a similar proof given by Gomory

in [6].

-41-

Let us assume that we had an infinite sequence of this sort. The

vectors are all-integer, so their components charge only by integer

amounts. The first component (corresponding to the objective function)

cannot increase indefinitely because it is bounded above by z0 , the first

0
component of x . Therefore, the first component can only increase for

a finite number of times and it then remains fixed at some value z' 4 z 0

From now on the second component must be non-decreasing, and

there are two alternatives: a) it increases indefinitely, or b) it increases

up to a certain value, and then remains fixed. Alternative a) is excluded

because we assume that the problem is bounded in every direction, that

is, that the feasible range of every variable has an upper bound. If

alternative b) occurs we turn our attention to the third component of

Q0 , which offers the same two alternatives. In every case alternative

a) will be excluded, so that if every component increases up to a certain

value and then remains fixed, the value of every component will be fixed

after a finite number of major iterations. Thus, the assumption of an

infinite sequence has been contradicted and the theorem is proved. (Q.E.I

However, if we use the minimizing version of the basic algorithm

we have the following theorem, which is stronger than the previous on_:

Theorem 4. 2 If the problem is bounded it. the direction of

minimizin z , there can only be a finite number of major iterations.

-42-

Proof: The proof is similar to the previous one except that we

have now a lexi!co-decreasing sequence of solution vectors, and that

while z has a lower bound by hypothesis, the lower bound of every other

variable is aut6matically provided, because they all have zero as a lower

bound. (Q. E. D.)

(Any paricular problem can, of course, be solved by either version

of the basic al orithm, but in view of theorems 4. 1 and 4. 2 it appears

that the minimizing version is preferable).

In order to guarantee finite convergence for the overall algorithm

it is necessary to guarantee that a breakthrough (that is, a major iteration)

can always be obtained after a finite number of minor iterations. One

reason why a major iteration might require a very large or even an

infinite number of iterations, is because at any stage there may be more

than one generating element (i.e. more than one choice of iO , jO), and

if proper rules of choice are not followed, some sort of cycling may then

occur.

The problem of finding r-eie ci choice tha -vil assure finite

convergence of the primal algorithm appears to be a difficult one. After

a large number of analytical and com-'utational efforts we have not

succeeded in finding rules of choice that we can prove will guarantee

finite convergence in solving a general problem. However, we report

-43-

here two encouraging results: first a formal proof of finite convergenc

of the algorithm when applied to two-dinensional problems; and second,

the definition of a family of rules of choice (for the general problem)

which has both analytical and computational appeal.

4.2 Finite Convergence of Two-Dimensional Problems

We have been able to prove finite convergence of the algorithm

for two-dimensional integer LP problems. Consider a general two-

dimensional integer LP problem. It can be expressed by means of a

tableau with columns j, j= 0,1,2; and rows i, i = 0,1,...,m. These

m + 1 rows include the objective function (row zero), and n constraints,

two of which are the non-negativity constraints of the problem variables.

The objective variable is unsigned and every other row variable is non-

negative. We will assume that the tableau is already in primal feasible

form since we are concerned here only with the basic algorithm. Let

us say that the objective function is to be miximized, and let us assume

that the problem is bounded in every direction. I

1 This does not entail any loss of generality because it can always be

done by using A. CHARNES and W. W. COOPER "regularization"

method. See their book Management Models and Industrial

Applications of Linear Programming. 2 vols. (New York: John

Wiley and Sons, Inc. 1961) pp. 424-127.

-44-

Types of Rows. Dominance

One of the characteristics of pivoting on an element of value + I

(as it is the case with the basic algorithm) is that the pivoting column

(a A) changes sign; and in particular, it becomes (lexico-graphically)

positive.

Considering the two columns (al , z), there are three possibil-

ities:

a) Both are positive,

b) One is negative, the other one is positive,

c) Both are negative.

In case a), optimality is already proved, so the problem is solved.

In either case b) or c) we can pivot on a negative column and it will

become positive, while the other column either becomes (or stays)

positive or negative. If positive, optimality has been proved; if negative,

we are left with a negative column and a politive column.

Whenever one column is negative and :he other one is positive

(the zeroth column has been excluded from these considerations), we

say that the tableau is in normal form. We can see that the tableau

will remain in normal form uintil optimality is proved. (The pivoting

column always becomes positive and the other one becomes negative, _-

unless optimality is proved). We will denote by "a" the negatf2"

-45-

column (its elements will be ai) and by "b" the other column (elements

a ib)"

A row i., i * 0 , will be classified according to the signs of its

elements a. a and aib

Type aia aib.

1 0 -

2 - 0

3 - -

4 - +

5 0 +

6 + 0
7 + , :."

++

Furthermore Iet us divide the rows of type 4 into two sub-types.

u aOa aib I aOb a.a

4b) If a a aib< a.

Any row of type 1, 2, 3 or 4a will be called a dominated row. Any

row of type 4b, 5, 6, 7 or 8 is a non-dominated row. The current level

is the number of non-dominated rows in the current tableau. Rows of

type 1, 2 or 3 are called trivial. Only rows of type 6, 7 or 8 are

pivotable because they are the only ones with a. > 0

-a

-46-

Considerations about Pivoting

When the tableau is in normal form and a pivot is performed,

columns 1 and 2 exchange roles (if optimality is not proved). That is,

if column 1 was designated as column "a" before pivoting, it will

become column "b" after pivoting; and vice versa. The same is true

for column 2, of course.

The pivoting formulas (2. 4. 3) may then be expressed as:

k+ I k k (i0) kaio = ai "-bo (i a
0 iO0 0 i a

k+l k k ka a b (i0) a.(421
1a ib b a

k+l ka.b = -a.a i =0,. . ., rn
ai b aia,

where b. k = [a.k /a a j = 0, a, b; a. k> 0 (4.2.2)
j i,j i, a

k
The quantities b (i) will be called b-factors; they are defined

b

only for pivotable rows. (The superscript k indicates that the quantity

corresponds to the kth tableau).

Some Lemmas for the Tableau in Normal Form

Let I= I ii ,..., m and a. > 0.
a ia

Lemma 4. 1: If after pivoting (on column a) on a cut generated

from iO (iO + I k), optimality is not proved, then the following conditions
a

hold for any row i, it +Ik

a

-47-

Condition A) I b k (i) > b' (iO) then b +I(i) =-I

Condition B) If b k (i) = bbk (iO) then either bbk (i) <.- 1

or row i becomes trivial.

Condi tion C) If bbk (i) < bbk (iO) then row i becomes trivial.

Proof.s:

k k
Condition A: Let d b b (i) - b b (WO), we will then have d ;0 1

k kbecause b b (i) > b b (i 0) and the b-factors are integer..

Applying (4. 2.1)

k~l k k k k' k k k
a. i aib b b(i0) a,. a ib -b i Ma. + da.i

By means of (3.2.2) and (4.2.2)

k+1 k k k
a =a(a jbl a) + d a

Therefore, because of (3.2. 1) and because d at 1

k+l ka. ~a. > 0

Also a k -a.k < 0
ib i

k+l k+l
so that I a .Lb a a

tebk+l Uk+l k+l ak1j (O..D
b = , ab ia. a b 7. a

Con dition B: If b k M bk i)wwilhvby(.22,(32.)
b ()=b i)w ilhv y(..) 322

and (3. 2. 1),

-48-

k+l k ka. =(".
ia (aib Iia

k k+ 1
and a.k > a. kI 0

ia ia

k+l k
also, aib -a

1) if a. = 0, then row i becomes of type 1, that is, a
ia

trivial row.

k+ 1 k+ l k k- 1
2) If aia > 0 then aib aa > a.a

therefore

k+l k+l k+l k+l k+l
bb (i) = ib /a i = aib /a ia < -l (Q.E.D.)

k < k k k
Condition C: If bb (i)< bb (iO) and we let d = bk (i) bb (i)

then d > 1

now

k+l k b k0k k k k k (ak k d ka a -b(iO) a.a.b a-d . =a ja)da.
ia ib b ia ib bia ia ib ia ia

but

k k k k k
ib ia ia ia ia

so that

k+i
a. < 0
la

also,

k+l k
a =-a. < 0
ib ia

then, row i becomes of type 3, that is, a trivial row. (Q.E.D.)

-49-

Lemma 4. 2: Every pivot, except perhaps the last, is done on a

cut generated from a row of type 7.

Proof: In normal form the only pivotale rows are those of type

6, 7 or 8.

If we pivot on a cut generated from either a type 6 or a type 8,

we will have bb (i) > 0 and

k+I k k (i0) 0
0a O bb 0a

k k
(because by assumption, a a < 0 and akb > 0 for k > I)

k+ I k
also, aOb -aOa> 0

The solution would have been proved optimal and the algorithm

would stop. Therefore, only the last cut upon which we pivot may come

from a row of type 6 or 8; all the other cuts must come from rows of

type 7. (Notice that optimality can also be proved after pivoting on a

cut generated from a type 7 row).

I!, Lemma 4. 3: Every dominated row stays dominated, unless

optimality is proved.

Proof: A dominated row may be of type 1, 2, 3 or 4a. If row i

is of type 1, after pivoting (on a cut generated from a type 7 row), we

will then have

k+I k k (i0)ak k k+l k
ia ib b ia ib ib = a

-50-

thus, it becomes a row of type Z, and therefore, it remains dominated.

For rows of type 2, 3 and 4,, we may restate lemma 4.3 in the

following fashion:

Lemma 4. 3': Any row with a. k< 0 and aib such that

k k k k
'Oa aik > a b a.k will become, in ore iteration and if optimahty is not

proved, a row of type 4a.

This lemma 3tates that rows o'f types 2 and 3 become of type 4a;

and those of type 4 a remain of type 4a. This agrees wi ', lemma 4. 3.

Proof of lemma 4. 3': If optimality is not shown we shoulh. ,ave

k+ I k+ I k
a0 a < 0 , because we already know that aOb - Oa > 0 Then,

k+l k k k (i0) 0
0oa Ob Oa bb

or

(ak /ak)>bk (i0) (4.2.3)Ob Oa b

We want to prove that row , after pi-voting, will be a row of

type 4a, that is, such that

k+l k+1 'k+ 1 k+ 1 k+ I k+ I
a0 a ib > anb aia ,with aia < 0, aib > 0

Applying (4.2. 1)

k+1 k kio k
aOa = A k - b (io) a < 0 (by hypothesis)

Oa Cb b Oa

k+ I k
aOb -a >0

Ob Oa

-51 -

k.l k k k
a. a-- a b (0)

ia ib ia b

k+l k
a =a. > 0 (4.2.4)

From the original hypothesis and from (4.2. 3)

~~k k k k k 'O
(aib/a > (aob/aoa > bk

kk k (i)ak

remembering that a.k < 0 , we have a.k < b .() ak
i a ib b .ia

k+ I
and therefore a. < 0

la

k+l k+l k+l k+l
Let us now assume that aOa aib < aOb aia

If we substitute the expressions (4. 2. 4) into this inequality, after

simplifying we obtain

k k k k
aOa aib < aOb ia

which contradicts the original hypothesis. Therefore we should have:

k+ 1 k+1 k+l k+l
aOa aib a b ia

k+lI k+lI
We have also proved that a.ka < 0 and a > 0 ; so that the

ia ib

proof of lemma 4. 31 (and of lemma 4. 3) is now complete.

Lemma 4. 4: A row of type 4b, in a single iteration, and if

optimality is not proved, will either remain of type 4b, or become or

type 5 or 8, but it cannot become of type 4a.

k k
Proof: By definition, a row of type 4b has a. a< 0 , aib > 0

k k k k
and a k a.k <a a.a

Oa ib Ob ia

-52-

We will have

k+ I k k ka. a.i0 a.

a aib - bb)a

k+l ka. = - a. > 0
aib aia

k+ 1We cannot say anything certain about the sign of a. ; it may be positive,

zero, or negative. If it is pooitive, row i has become of type 8; if it is

zero, row i has become of type 5; if it ib negative, row i has remained

of type 4.

k+ 1
Let us assume that a. < 0 , and that row i has become of typeia

k+l k+l k+l k+l
4a, that is, that aOa a ib > aOb a. . Putting this in terms of elementsia

thof the k tableau and simplifying we get

k k k k
Oa aib aOb ia

but this contradicts the original hypothesis; so that we should have
k 1 k+l1 k+l1 k+l1

aka a < akb a.a , and this proves that row i may remain of type
Oa ib Ob ia

4b, but cannot become of type 4a.

Lemma 4. 5: A row of type 5 will become, in a single it ration and

if optima;iLv is no. sh vw., a ruw o: 'ype 6.

Proof: If row i is of type 5, then by definition

k k
a. =0, a >0

ia ib

after pivoting:

-53-

k+ I k k (iO) k k
a ab bb a -aib > 0

k+l k
aib = a

Thus, row i has become of type 6.

Lemma 4.6: A row i of type 6 or 8 will become, in a single

iteration and if optimality is not proved, a -ow of type 7. Furthermore,

k+ 1
it will have b (i)= -

b

Proof: By definition, if row i is of type 6 or 8, it will have

k k
aia > aib 0

If optimality is not proved this means that we pivoted on a cut

generated from a row of type 7 (lemma 4. 2). Therefore, we will have

bbk (io) - 1

Then
F

k+l k k k k
a. a b (i0)a a >0
Ia ib b ia ia

k+ I k<
aib =-a<0 .

Thus, row i is now of type 7.

Also,

k+l k+1 k+ k+l k+l
bb)=[al i] = I because 1 l(aib /aia)< 0

Lemma 4.,7: A row i of type 7 may b come, in a single iteration

and if optimality is not proved, a row of type 1 or 3, or it may remain of

type 7.

-54-

Proof: By definition, if row i is of type 7 it will have

k k
a >0, a <0 Then,

k+l k k (ik) ak
ia a ib bb 0 a

k+ 1 k
aib =-a.< 0

k k~l.
If optimality is not proved this means that bb (iO) 4 - I . Now, ab

k+l
is necessarily negative, but a. is the difference of two negativeia

quantities; therefore, it may either be positive, negative, or zero. Row

i will then become of type 7, 3 or 1 resepctively.

The Graph of Changes of Type

From lemmas 4. 3 to 4. 7 we realize that a row may change its type

in a single iteration (and if optimality is not shown) but only to certain

other types. The possible changes can be summarized with the following

graph:

------------ r~-------------

7 1
I I

, '
I I

Non-dominated rows Dominated rows

-55-

It will be noticed that there is a possible flow of non-dominated

rows, but not vice versa; that is, we have proved that the level is non-

increasing.

A Theorem on Convergence of Two-Dimensional Problems

Lemma 4. 8: Unless optimality is proved, or unless a breakthrough

is found, the level can be decreased by at least one in a finite number of

iterations.

thProof: If there were no pivotable rows in the k tableau, the

problem would have an unbounded solution and this would contradict our

initial assumption.

If there are only pivotable rows of type 6 or 8, but none of type 7,

then at least one of them is most-binding and the solution will be proved

optimal as was shown in lemma 4.2.

But let us assume, for the sake of argument, that there is at least

one row of type 7, and that no row of type 6 or 8 does ever become most

binding. Of the set oi rows of type 7 there will be some rows i with

k. k ...bb (i) =-I and some with bb (i) < -I . Let us call the two subsets

7k 7kI and , respectively. There will be two cases:
7k 7k

Case I: 12 empty (and I not empty)
2 17k 7k

Case I: 71 not empty (I either empty of not empty)

In case I, after one iteration and if optimality is not proved, we

-56-

will have case II; because by condition B, lemma 4.1, every row in 7k
7 k+1

will be in tiiig this iteration, one or more of the rows

I k iiay become trivial, in which case the lemma is also satisfied.)

In case II, if there is any most-binding row in I1 and we pivot on
I

the cut generated from it, then every row of 12 will become trivial,
k

because bb (iW) = - 1 and because of condition C of lemma 4.1; and the

level would therefore decrease, thus satisfying the lemma.

7k
So, let us assume that at least one row in 12 is most-binding and

that we pivot on the cut generated from it (and optimality is not proved
7 k wilbn7_k+l

upon pivoting). Every row in I will be in 1 as condition A of
k

lemma 4..1 shows (because bi0)< - 1 and b (i) - 1 for every
l 4b

7 k 7 k+l
it 7 1). Any rows that were of type 6 or 8 will conc to belong to 7 1

as lemma 4. 6 shows. Furthermore, atiy row of 712k which had
k k7_k+l bcueo odtoAo

bbk (i) > bb k (iO) will become of the set I1 because of condition A of

lemma 4.1. If there were any rows in 71k such that bk (i) < bk (i)
2 b b

then, by condition C of lemma 4.1, they would become trivial and the

lemma would be satisfied.

7_k+l ol aebeogdt
The only rows that would belong to 1 would have belonged to

2
7 and would have had bk (i) = bk (i). The only way the level could

2 b b

remain unchanged is if we could always be able to find a most-binding

7h
row in the sets I, h= k ,k+l,..., and if none of the rows in these

sets became trivial.

-57-

However, any row i in 1 2 would have had b b (i) = b b 0)

kl k+l h h
b (i) = bb (iO), ... , bb (i) = bb (and therefore, because of

lemma 3. 2 and (4. 2. 1) we will have

k k+l h-l h
La iLa ia ia

k
Clearly, because the a. ' s are integer and aia is finite, thereia l

7h
will be a tableau h in which every row i , i 72 , would be such that

h ha._ >a > Oio ia

7k
This means that: either at least one of the rows originally in 71

h

became trivial at some tableau h (when a. = 0); and/or a tableau h
ia

7hhas been found in which no row of I2 is zero-binding. Therefore, if
2

there is any zero-binding row in I1 we are forced to pivot on the cut

7h
generated from it and thus every row in 12 would become trivial and

7 h
the lemma would be proved. (The set 12 would not be empty because

by condition B of lemma 4. 1, it would contain at least the row from which

the last cut wiq aenerntp' ; -nless that row has become trivial, in

which case the lemma is also satisfied.) Otherwise, if there is no

7 h
zero-binding row in I I either, this means that a breakthrough has

been found, and the lemma is again satisfied. (Q. E. D.)

Theorem 4. 3: If the two-dimensional problem is bounded (as in

lemma 4. 8) then, in a finite number of minor iterations (pivots), an

optimal solution will be found and its optimality will be proved.

-58-

Proof: Any tableau in normal form has a finite number of non-

dominated rows (i. e. the level is finite); therefore, by repetitive

application of lemma 4. 8 we see that, unless optimality is proved or a

breakthrough is found, the level will decrease, and it could become zero

in a finite number of iterations. But this would imply that the problem is

unbounded and this is contrary to our assumptions. Therefore, in a

finite number of iterations either a breakthrough is found or optimality is

proved. This, together with theorem 4.1 proves the present thcorem.

(Q.E.D.)

It should be pointed out that neither finding a breakthrough, nor

pivoting after it has been found, does necessarily imply a decrease in the

level.

Comments on the Proof of Finite Convergence

It should be noticed that the proof, besides boundedness of the

problem, only requires that the tab..,.;, bu in normal form; and this

can be accomplished by using at most one iteration; but it does not

require the use of any specific rule for choosing one among the several

most-binding rows that might be available for pivoting, and it does not

require that rows of type 6 or 8 (which imply immediate optimality) be

recognized.

However, the performance of the algorithm with a two-dimensional

problem can be improved greatly if the following rule is used.

-59-

Rule: Among the available most-binding rows (in case there are

ties) choose iO such that

k k
b (iW) = max {b k (i)}

i.I b

where I is the set of most-binding rows.

This rule has two convenient effects: a) it accelerates the decreasi

of the level, b) it "recognizes" and gives preference to rows of type 6 or

8, thus shortening the process.

4.3 A Promising Family of Rules of Choice for n-Dimensional Convergen

Among the many rules of choice that were tried analytically and

computationally for convergence of general problems, one class of rules

finally emerged as the most reasonable, and it has indeed given encour-

aging computational results. We have called this family of rules:

hierarchical rules of choice. Let us consider the n current k-dimension

problems P(k) , constituted by the first k current parametric variables

th
.(I- k 4 n) plus the zero column. This establishes a current-hierarchy

of problems; that is, P(k) is a sub-problem of P(k + 1) , which in turn

is a sub-problem of P(k + 2) , and so forth. P(n) is, of course, the

original problem.

The rules will be presented by giving the algorithm.

-60-

Hierarchical Algorithm

A) If there is no breakthrough on any column go. C, otherwise go

to B.

B) From the columns with a breakthrough, select the most negative

one as the pivoting column. Choose on of the most-binding rows as

generating column, generate the Gomory cut, pivot and go back to A.

C) Select the smallest not lexico-optirnal problem P(k). That is,

I I
k is chosen so that a k < 0 while a. > 0, j = l,..., k - j. (This3

implies that the current P(k-l) has been proved lexico-optimal.) If

there are no negative columns the lexico-optimal solution has been found

and its lexico-optimality has been proved.

D) In order to solve the current V\lk W(C',!ract from it a (k - 1)

dimensional not lexico-optinal 4ob-problem. Th. , neans that we have

to reorder, in some specific ,.ay, the first k o-mnsi *: that the negative

column a k will now occupy one of the fi lst . , (:Aat is, without

counting column zero). This new List I - 1 column will define our new

P(k - 1). This reordering is done recursively so that a new hierarchy

of sub-problems P(j) , j = 1, k - 1 is established. The negative

column (previously the k t h) will now occupy the first position and,

together with a 0 , constitutes the new P(l). The first column is now

chosen as the pivoting one.

E) Considering again the complete tableau, one of the rows that

-61-

is most-binding on column I is selected as the generating row, a cut is

generated from it, and after pivoting (thus possibly modifying the whole

tableau) one goes back to A.

In step D we implicitly extract from P(k) , by reordering, a new

P(k - 1) because the current one has been proved lexico-optimal. It is

in this re-extracting cf a sub-problem that the main theoretical difficulty

lies, because in order to assure convergence, this new (k - I)-

dimensional sub-problem has to "dominate", in s:me fashion, the current

P(k - 1) whose lexico-optimality has just been established. In other

words, if the current P(k - 1) has been proved lexico-optimal, it means

that no better solution for P(n) is found in the (k - 1)-dimensional

polyhedron defined by t. = 0 , j = k,..., n . Thus, we have to change3

one of those parametric variables specifically, by reordering the first

k columns as described above, we bring in a new t . This new t
k

would have to be more "dominating" than the old one. Although this

dominance has been established for 2-dimensional problems, it has not

been generalized to larger problems. The way we have used to go around

this difficulty is described next.

Some Heuristic Members of the Family

Since no analytical grounds for extracting the sub-problems have

been discovered, we have resorted to heuristics (and, anyway, heuristics

-62-

are usually the roads to analytical grounds).

If the current P(k - 1) is lexico-optimal and ak < 0 , extracting

a new P(k - 1) from P(k) is equivalent to upgrading one. of the first

th(k - i) columns to the k place and making Ck one of the first (k - I)

columns. It is in selecting that column of P(k - 1) which is to be

upgraded, that a heuristic can be introduced. Some possible heuristics

are: a) upgrade the (k -) t h column (heuristic JA), b) upgrade the

first column (heuristic JB), c) upgrade the column upon which we have

pivoted most recently (heuristic JC), d) upgrade the lexico-largest

column (heuristic JD).

Rule A when applied recursively, would put the kt h column in

the first place and would shift the first (k - 1) columns one place up.

Rule B would reverse the order of the first k columns. -Rule D

would rearrange the first k columns in lexico-decreasing order. In

any case, the pivoting column (which previously was the kth) would end

up in the first position.

Once the pivoting column has been chosen, and the columns have

been reordered. it is necessary to choose a pivoting row among the ones

that are most-binding on the pivoting column. The following are two of

the possible heuristic rules of choice: a) take the first most-binding

row (heuristic IA), b) take the most-binding row that generates the

-63-

JJ

lexico-largest Gomory cut (heuristic IB). Heuristic IB is a direct

extension of the rule given at the end of section 4. 2. (A row vector B,

is lexicographically larger than another row vector B. if the first

element where they differ, counting from left to right, is larger in B1

than in B .)

4. 4 Computational Experience

We have not tried out every combination of heuristics nor even

every heuristic. Only the following three combinations have been studied

JA - IA, JA - IB, and JB - IB. Combinations JA - IA and JA - IB were

successful with many problems but JA - IB was more efficient: JA - IB

solved problems that were not solved (in a reasonable amount of time) by

JA - 1B, and those problems that were solved by both combinations were

solved faster by JA - IB.

A few small problems were tried with combination JB - IB but

none were solved. Thus, we have selected combination JA - IB as a

good heuristic.

In order to compare the performance of our algorithm with those

of other authors we have selected the nine examples found in ref. [10].

Thompson has used those examples to compare his method with the all-

integer method of Gomory [6]. The results are shown in Table 4.1.

-64-

In analysing these results it should be considered that the iterations of

Gomory' s all-integer algorithm are computationally equivalent to ours.

Thompson reports two figures for performance: the number of stopped

linear programming problems that were solved (L. P. ' s), and the total

number of pivots required for their solution (last column of Table 4. 1).

He also states that the solution of one of the stopped LP problems takes

about the same as one of Gomory' s iterations, whether it is done by

hand or by machine.

The nine problems are initially in dual feasible form which would

seem to be advantageous to both Gomory' s and Thompson' s algorithms.

Our algorithm was programmed in such a way that whenever

several columns had a breakthrough, the first of these columns was

chosen, rather than the most negative.

-65-

TAELE 4.1 NINE EXAMPLES SOLVED WITH DIF FERENT METHODS

Example Dimensions Rule JA - IB Optimal Found
of Tableau Feasible Optimal Optimal 1 GOMORY I THOMPSC

Found Found Proved (iterations) L.P., s Pi

(IterationN .)

1 ' 5x3 5 7 8 13 20

2 7 x 4 35 37 37 1000* ?

3 7x 4 24 25 84 1570 173 1

4 11 x 6 500* - -? ?

5 5 x 3 51 102 102 ? 255 1

6 5 x 3 102 102 202 ? 260 1

7 5 x 3 102 102 202 ? 255 1

8 17 x 9 4 12 74 5215 13

9 18 x 8 1000* ? 2038 108

Other Problems Tried

A 8 x 6 0 17 17

B 20 x 13 14 19 20

C 25 x 13 78 - 300*

D 43 x 19 16 22 38

The asterisk (*) indicates that the program was stopped after this many

iterations without having found the answer.

(1)This is the total number of iterations required to solve the problem

(it includes the iterations used for finding a first feasible solution). A

question mark (?) indicates that the figure was not reported in ref. [I0j.

It does not imply that the problem was not solved.

-66-

CHAPTER 5

INTEGER L.P. AND NUMBER THEORY

In the present chapter we will develop a generalization of the

Euclidean Algorithm, and we will explore the application of integer L. P.

to the solution of linear diophantine equations. The importance of these

problems and of their solution is well established in number theory (for

instance, see refs. [23] and [241).

5. 1 Generalized Euclidean Algorithms

Whenever we talk of the greatest common divisor (g. c. d.) of two or

more numbers, or of a vector of numbers, it will be with the implicit

understanding that the numbers are integer, and that we are referring to

the g. c. d. of their absolute value.

The Euclidean Algorithm finds the g. c. d. of two numbers by

performing successive divisions (where the divisor is the previous

remainder and the dividend is the previous divisor), until the remainder

of a division becomes zero. The absolute value of the last divisor, which

is also the last non-zero remainder, is the g. c. d. of the two original

numbers. The procedure terminates in a finite number of steps.

-67-

The traditional way of finding the g. c. d. of more than two numbers

has been to find first, by means of the Euclidean Algorithm, the g. c. d. of

two of the numbers; say it is d . Then the g. c. d. of d and another one

of the numbers is found, and so forth, until all of the numbers have been

taken into consideration. The final number obtained is shown to be the

g. c. d. of all the original numbers taken together.

We propose here a more general procedure, which is based in what

we call elementary operations on a vector. Consider a vector

A = (a 1 , a). An elementary operation is either: changing the sign1 n

of one element, or, adding or subtracting from element a. an integer

multiple of another element a. , j 0 i . Thus, a. will be called the3 1

element to be transformed, and a. the transforming element.3

Lemma 5. 1: The g. c. d. of a vector is unchanged by elementary

operations.

Proof: t A = (a, a,..., a), where the a.' s are integer and2 n 1

at least one of them is different from zero. Let d be the g. c. d. of A.

(If there are a 4 zero elements this does not make any difference because

any number is the divisor of zero. Thus, the g. c. d. of vector A as a

whole is the same as the g. c. d. of the non-zero elements of A).

One of the two types of elementary operations is to change the sign

of one of the elements; this will obviously not affect the g. c. d. of the

vector.

-68-

The other type of elementary operation is where a. is changed1

into a. + k a. ; i # j, k = 0, t 1, t 2 Let us call A' the vector A
I J

after we have applied one elementary operation of the last type. We want

to show that the g. c. d. of A' is the g. c. d. of A . Say that d is the

g. c. d. of A . We have to show that d is a common divisor of A' , and

that there is no larger common divisor of A' . If d is the g. c. d. oi A

we can put

A = (a,,..., a)= (db , db 2,...db n

1n 1 2 n

After the elementary operation the only element that will be changed will

be a! . We will have
1

a! = a. + ka. = db. + kdb. = d(b. + kb.)
1 1 1 1 J

Thus, d will be a common divisor of A' . Let A. be the (n - 1)-element1

vector that remains after we remove a. from A . The g.c.d. of A. is1 i

either d or a multiple of d If it is d , then the g.c.d. of A'

A' = (A i ., a!) = (A., d(b. + kb.)), is also d because of the associative law

of the g.c.d. (see ref. [23], p. 4 8).

On the other hand, let us assume that the g. c. d. of A is cdi

where c is a positive integer larger than one. The only way in which

the g. c. d. of A' would be larger than d , would be if the g. c. d. of cd

and a! = d(b. + kb.), was larger than d ; and this could only occur if c

and b. had some common divisor, as d , (d L > 1). But if this were true,

-69-

then the g. c. d. of A would have been d in the first place. It follows

that c and b. do no have any common divisor, and therefore, d is the1

g. c. d. of A' , which proves the lemma. (Q.E.D.)

We can now propose the following theorem that justifies the

Generalized Euclidean Algorithm (G. E. A.).

Theorem 5. 1: If we have an n-dimensional vector and we perform a

sequence of elementary operations on it, so that only one non-zero element

remains; then the absolute value of this last number is the g. c. d. of the

original vector.

Proof: The g. c. d. of a vector that has only one non-zero element

is precisely the absolute value of that element. Therefore, by lemma 5.1

it follows that this is the g. c. d. of the original vector. (Q. E. D.)

Any rule that guarantees the "reduction" of the original vector (so

that it will have only one non-zero element) in a finite number of steps,

will constitute a valid G.E.A. The following rule provides a family of

convergent G. E. A. ' s.

Rule: Always apply elementary operations such that the absolute

value of the transformed element is smaller than its previous absolute

value, and smaller than the absolute value of the transforming element.

The Euclidean Algorithm is a particular case of the G. E. A. because

finding the remainder of the division is an elementary operation that

-70-

satisfies the previous rule.

These results, although they are somewhat stronger and have been

developed independently, are similar to those of W. A. Bl.nkinship

(ref. [22]). He not only finds the g. c. d. of ni positive integers, but also

finds one solution to the diophantine linear equation that has these n

integers as coefficients and the corresponding g. c. d. as constant term.

His approach does not explicitly involve integer L. P.

In the following sections we will develop, by means of integer L. P. ,

much more general results for the solution of systems of diophantine

equations.

5. 2 General Solution of Linear Diophantine Equations

A linear diophantine equation is a linear equation With two or more

unknowns, whose coefficients are assumed integral. The problem is to

find a set of integers, or a family of sets, that satisfy the equation.

The classical way of solving an equation with two variables is by

applying certain recursive relationships to the quotients and remainders

obtained from the Euclidean Algorithm, when applied to the coefficients

of the two variables. This results in two expressions for the unknowns,

in terms of one arbitrary integer variable. An equation with n unknowns

(m > 2) is solved by solving a sequence of equations in two variables

-71-

(method of repeated reductions). The final general solution involves

n - I arbitrary irteger variables. (See ref. [24], Chapter III).

A system of m linear diophanti.ne equations with n unknowns,

(m < n), is solved by obtaining the general solution of one of them (in

terms of n - I arbitrary integer variables) and by introducing the

resultirg expressions into a second equation; the general solution oi this

second equation will now involve n - 2 arbitrary variables. The process

is repeated until every equation is considered. The final solution for the

n unknowns will involve n - m arbitrary integer variables.

General Solution of Systems of Equations

We propose here a more direct method of solution of systems of

linear diophantine equations. We will consider a tableau with m + n

rows, where the first m rows correspond to the m equations and will

have associated with them m zero-variables sl' . . . s . The last mm

rows will correspond to the n unknowns x 1 ... , x , and these will be

considered unsigned variables (in the next section we will study the non-

negative solution, here we want the general sc'ution).

The method is to apply, to the first row, the row reduction

procedure of lemma 3. 3, until there is only one non-zero element besides,

th
perhaps, the zero element (al,). Let the non-zero element be

a 1 , j 0 . Then we know from lemma 3.2 that 0 a 1 0 <]al~t • If

-72-

a 1 ,0 > 0 , then equation 1 does not have any solution in integers. (We

would have sl = a 0 - al j t. but there is no integer value of t. that

makes s I equal to zero because al,0 is not a multiple of a lj). However,

if a 1 ,0 = 0 , this means that t. is a zero-variable and column j may be

erased, thus reducing the size of the tal'2,au. The procedure is repeated

with the next row (now with only n - I variables), and the next, until

every one of the m rows has been reduced, and we are left with n

rows representing the general solution of the original m equations. The

procedure is guaranteed to en. in a finite number of steps (see lemma

3. 3). For an alternate procedure see Appendix B.

Example

Find the general solution of the diophantine system:

3x - 6x 2+ 16x = 1

2xI + 5x - 6x = 2

The steps in the solution are:

I -t -t2 -t 1 -t4 -t 2 -t3 1 -t -t2 -t5

s 1 30 6 16 s I 1 -3 0 1 S 0 0 0 -11 t- is a zero-
1 1 1 1-

s 2 2 5 -6 s2 2 -2 9 -16 s2 18 -50 9 , 16 variable, the

x 0 -1 0 x1 0 1 -2 5 x -5 16 -2 -5 tableau may
I1 1

x 0 0 -1 0 x2 0 0 -l 0 x2 0 0 -l 0 be reduced

x 0 0 0 -I x 3 0 0 0 -1 x 13 -3 0 1

t4) 0 1* -2 5 t 5) 1 -3 0 1* t 6) 2 -6 1* -

-73-

1 -t 4 -t -t 7 -t 6 -t7 -t8 1 -9 -t8

s 2 0 4 9 s2 0 -4 3 ° s 2 0 2 ° -3 s2 0 -2 1 °

x -1 4 2 xI -1 -4 14 x 1 24 -14 x -1 -24 34

x2 2 -6 1 x2 2 6 -17 x2 2 -28 17 x2 2 28 -39

x 1 -3 0 x 1 3 -9 1-15 9 X 1 15 -21

t 7) 0 1* -3 t 8) 0 -2 1* t 9) 0 1* -2t)O -2 1*

1 -t -tl1

0 0 -1 t is another zero-variable. The general

-1 44 1 -34 solution is

2 -50 1 39 x, =- 1 - 44k

x 1 -27 21 x = 2 + 50 k where k is an

x 3 = 1 + 27 k arbitrary integer

Analysis of Congruences

Another important part of number theory is the solution of algebraic

congruences. A linear congruence can be expressed as a linear diophantine

equation. For instance a x b (mlod c) is the same as the diophantine

equation: a x + c y = b . Both the problem variable x , and the "modular"

variable y , are unsigned.

A system of linear congruences can be solved by the method given

above for the solution of systems of linear diophantine equations. One

special feature is that the value of the modular variables is of no interest,

-74-

therefore, we only need rows corresponding to the congruences and to

the problem variables.

5. 3 Non-Negative Solutions of Diophantine Equations

The problem of finding non-negative solutions (i. e. solutions in

non-negative integers) of systems of linear diophantine equations is

also studied in number theory. The problem may be approached by means

of integer LP as will be shown in the following paragraphs.

As in the previous section, we will consider a tableau with

m + n rows. The first m rows correspond to the m equations and

have m zero-variables associated with them. The last n rows

correspond to the n unknowns, and these will now be constrained to be

non-negative. The first row is taken at the same time as objective

function and as a non-negative constraint; the idea is to minimize a 1 0

until it becomes zero (if this is possible). But in doing this we pivot in

such a way that the variables remain non-negative. Once a10 has

become zero we may use the row reduction procedure of lemma 3. 2,

until there is only one non-zero element a l, j * 0 in row 1. The

parametric variable associated with column j should be a zero-variable

so we can now reduce the tableau. We repeat m times this procedure

of reducing rows and reducing the tableau.

-75-

The result will be a tableau with n rows and n - m + I columns

th th
(n - m parametric variables plus the zero column). The zero column

will give one non-negative solution of the original system of equations.

If we are interested in finding the lexico-smallest non-negatlve solution,

we may apply our basic algorithm in order to minimize the solution of the

reduced tableau (taking into account that the n rows correspond to non-

negative variables). When every column becomes lexico-negative we

would have obtained the lexico-smallest non-negative solution of the

original system of equations.

The finite convergence of this procedure is, of course, dependent

on the finite convergence of the basic algorithm.

If one is interested in a positive solution, it is sufficient to state

the problem in terms of new variables x! , where x! = x. - 1 , and

require that the x! be non-negative.
1

-76-

CHAPTER 6

GEO ETRIC CONSIDERATIONS

6. 1 The Restricted Polyhedron and the Primal Method

Any LP problem i given by a set of linear constraints and a linear

objective function to be optimized. The set of constraints defines the

original convex polyhedron,and it can be shown that one of the vertices

of this polyhedron corresponds to an optimal solution, if an optimal

solution exists. For the continuous (non-discrete) LP problem, any

point on the polyhedron or in its interior will be a feasible point. The

primal simplex method, through successive pivoting, advances from

P vertex to vertex until an optimal vertex is found; and it does this in such.

a way that the value of the objective function is non-decreasing as the

algorithm moves from one vertex to the next.

In the case of a discrete LP problem (see section 1. 1), we also

have the original polyhedron, but it is no longer true that any point on

its surface is a feasible point. However, there exists one, and only one,

restricted convex polyhedron that is contained in the original polyhedron

and such that: a) everyivertex of the restricted polyhedron is a feasible

point (i. e. it satisfies both the constraints and the discreteness

-77-

requirements), and b) there are no feasible points outside the restricted

polyhedron. (Notice that this does not imply that every point on or

within the restricted polyhedron is a feasible point.) The idea of the prim

algorithm is to advance (in a simplex-like manner) from a vertex of this

/ / restricted polyhedron to another vertex of the same polyhedron until the

optimurn is reached. By using the lexicographical simplex method the

algorithm always advances to another vertex that has a larger lexico-

graphical value (or smaller, if we are minimizing).

In order to constrain our computational "walk" to the restricted

polyhedron, we have to introduce some additional inequalities or "cuts".

These cuts serve only as guiding walls and as stopping barriers to

constrain our walk, but they need not actually correspond to any of the

planes that would define the restricted polyhedron. In the following

sections we will develop these ideas further.

6. 2 The Parametric Variables as a System of Coordinates

The following discussion has to do with our primal algorithm for

integer LP.

The original constraints of the problem are defined in terms of
Rn

x , -... Xn , and are hence defined in an n-dimensional real space R

having these variables as coordinate-. But by means of linear trans-

formations we can express the constraints in terms of different sets of

-78-

coordinates. This is precisely what we accomplish by pivoting: we

express all the constraints in terms of different sets of parametric
k tk

variables t, .. , t . It is possible to express the constraints in terms
I n

of n arbitrary variables as long as the system of coordinates they define

covers the complete space Rn . However, by obtaining the parametric

variables as the result of generating Gomory-cuts (remember that the

parametric variables are the slack variables of the Gomory inequalities)

we achieve the following results:

a) The n coordinate planes, corresponding to the parametric

variables, intersect at one of the vertices of the restricted polyhedron.

This vertex is precisely the one represented by the current solution

(i.e. the point defined by the current values of x1 , ... , xn

b) The restricted polyhedron is entirely contained in the non-

negative orthant of the space defined by the parametric variables, as

can be assured by the fact that these variables can only take non-negative

values whenever we have a feasible (integer) solution. hiL characteristic

is specially important for proving optimality. Notice al o that this

characteristic is specially important for proving optima ity. Notice also

that this characteristic does not imply that the original polyhedron itself

will be entirely contained in the non-negative orthant. This is not the

case, for instance, if the current (integer) solution is not also a vertex

of the original polyhedron.

-79-

c) There is a one-to-one mapping of the lattice of integer points

defined by x 1 . .. , x and the lattice of integer points defined by the

parametric variables. Among other things, this assures that whenever

the parametric variables have integer values so will the original variable

have and vice versa. This one- l0-one correspondence can be proved by

showing that the determinant of t e matrix D that expresses the x., s1

in terms of the parametric variables is always +1 or -1 (D is formed

with t e n rows labeled x,, ... x n plus an auxiliary row -1 = -1

that h lps to complete a (n + 1) by (n + 1) matrix. We will initially

have I DI - + 1 , and our pivoting formulas result in column operations

that do not change the absolute value of I Di .)

In geometric terms, whenever there is a breakthrough in a certain

column, this implies that the intersection of the n - 1 planes correspond
Di

to the other parametric variables, coincides with one of the edges of the

restricted polyhedron.

Geometric visualizations of some of the aspects of the problem,

although difficult to accomplish, provide additional insight into the workin,

of the algorithm.

An Important Observation about Gomory Cuts

Another important observation and one that, to the best of our

knowledge, has not explicitly been made by Gomory or by anybody else,

-80-

is the following:

Any Gomory cut generated from a certain row i (constraint i)

will be such that it will be satisfied by every non-negative integer point

(non-negative with respect to the current set of parametric variables)

that satisfies constraint i . However, the Gomory cut can be, and most

often will be, unsatisfied by some feasible integer points (feasible with

respect to constraint i) that are non-negative wit - respect to the

original variables. The Gomory cut generated from row i is then also

a function of the rows that have been used to generate the current set of

parametric variables.

6. 3 Inverse Pivoting

By successive pivoting operations we express the original variables

(x 1 ,..., xn) in terms of the parametric variables. If we wanted to express

the parametric variables in terms of the original variables, we would

have to invert the matrix that expresses the previous relationship.

However, if we choose to carry this inverse matrix along with our

regular tableau, the updating operation is a simple one, and there is the

added advantage of having obtained the inverse for every intermediate

tableau and not just for some specific tableau. The updating operation

will be called inverse pivoting, and it will be defined in the following

-81 -

paragraphs.

Let us establish a matrix notation that is slightly different from thi

of (2. 1. 5):

Let

k k kz a 0 0 a 01 . a0O

k

3= . A k

k k

x k

It k
n- a

mnD (6.3.2)

-1-82-

and

A k+ k k (6.3.3)

The square matrix Pk is the transformation matrix that expresses

the pivoting operation. Because we pivot on the jOth element of the row

k k k k
(bk b, bk), and because b. = 1 we have the following:0 1 n j0

1

P k -b . b.k 1-l bk -bk (6.3.4)
0 jO- 1 I j0+l n

I

L I

From (6. 3. 3) we have

D D 1 P _ D ° PO pl

using (6. 3. 2) we obtain, in general

S o 1 k-l k
X=D P P-P T

-83-

from which

k 00 1 k-lI k-i- I- o- oIi
T = (D ° PP Pk) X) ..)(P 1 (Po) (DO)

if we define E 0 = (D) =D = I (6.3.6)

and
Ek+i k-i Ek

E k (I) E , k =O, 1,... (6.3,7)

then

T =EX (6.3.8)

Matrix Pk is an elementary matrix, and because row jO has a- 1 in

the diagonal, it turns out that it is its own inverse, as can be easily

verified by multiplication. Equation (6. 3. 7) can then be expressed as

k+ 1 k
e.. =e.. ; for i¢ jO

n =O, 1,..., n (6.3.9)

k+ I k k
A j I . j jo, j

i=O

We may carry matrix E k in our computations and perform the

addition of rows expressed in (6. 3. 9), but it is mnemonically easier to

carry its transposition and to perform the operation on the corresponding

columns. Thus, under each column of the regular tableau we will have

another column that expresses the corresponding parametric variable in

terms of the original variables.

-84-

This technique of inverse pivoting is specially useful for -research

or whenever one is interested in learning how the successive Gomory-cuts

look like in the original space.

6. 4 Natural Inequalities

Let us consider the following inequality:

8 x I - 7 x + 5 x 3 -4 19 (6.4.1)

Where x, x and x 3 are non-negative integer variables. If we

let x = x 3 = 0 then (6.4. 1) would imply x 1 2 - [19/8]. Similarly if

x I X= 0 w would have x 3 4 3 -<[19/51. On the other hand, if we

generate a Gomory-cut from (6. 4. 1) with p = 8 and another one with

p 5 , we willhave:

With p = 8: x1 -x 2 12 (6.4,2)

With p = 5: x- 2 x2 + x 3 <3 (6.4.3)

We see that (6. 4. 2) strictLy binds x I !assuming x 2 = 3 = 0) to the

integer value that (6. 4. 1) only implies; anc (6. 4. 3) binds x 3 in a

similar way. We say that (6. 4.2) is a natural inequality of (6. 4. 1) for

x; and (6.4.3) is a natural inequality of (6.4. 1) for x 3

In general, if we have an inequality:

a x+ a2 x 2 +...+ an xn a ; (6.4.4)

-85-

and if aI has the same sign as a 0 , then the Gomory-cut generated from

(6. 4. 4) with p = a.i is said to be the natural inequality of (6. 4. 4) with

respect to x.

All the Gomory-cuts that are used in our primal algorithm are

natural inequalities. (They are "zero natural inequalities" or "non-zero

natural inequalities" according to whether they are "ze" o-cut" or not.)

6. 5 Deepest Cuts and Hierarchical Rules

We define a deepest cut as any of the hyperplanes that correspond to

the several faces of the restricted polyhedron. A deepest cut in 'this

sense, is different than the deepest cuts mentioned in [5J, [8] and [11],

where the concept is more that of "deepest" in a certain direction.

The number of faces of the res'ricted polyhedron may be smaller

than, equal to, or larger than the number of faces of the original polyhedro

as may be verified by drawing simple two dimensional examples.

A sufficient, but not necessary, condition for a certain parametric

variable t. to be a "deepest-cut variable" is if there is a breakthrough
J

in every one of the other columns. This is because it shows that, besides

the current vertex, there are other n - I vertices of the restricted

polyhedron that lie on the hyprplane t, 0 , thus determining it as aJ

deepest cut.

-86-

In general, it is difficult to have a tableau in which every parametric

variable is a deepest cut variable. This is because by using an "all-

integer" method, we are limiting ourselves in our choice of sets of

parametric variables. (If we take any n deepest cuts that define a vertex

of the restricted polyhedron and if we were to use this set as a system of

coordinatesto express the original constraints, we would have to use, in

general, fractional coefficients.)

However, it is conceivable that one of the parametric variables

(say t) might correspond to a deepest cut; and that the projection of an

second one (say tn.), might be a deepest cut of the (n-l) dimensional

projection of the restricted polyhedron over the hyperplane t = 0 ; and
n

subsequently, t 2 could be a (n- 2) dimensional deepest cut, and so

forth. This is the motivation for the hierarchical rules that were given

in section 4. 3. A deeper study c-f this aspect could lead to better

hierarchical rules.

6.6 Geometric Considerations of Two-Dimensional Convergence

In section 4. 2 we developed a proof of finite convergence of the

basic algorithm when applied to two-dimensional problems. In this

proof, an algebraic concept of dominance of rows was used. We will now

present the geometric motivation of this concept.

Let us consider the two-dimensional space as given in terms of

-87-

the current parametric variables ta and t . We will define the

primary region as the region given by t >, 0 t t 0 , z > a " That
a b 0,0

is, every point in this region is non-negative and would give z a value

not smaller than its current value. Clearly, the optimal solution,

(assuming it exists), is to be found in the primary region.

If a certain constraint (row) is satisfied by every point of the

primary region, the constraint is said to be dominated; if it is not

satisfied by a subset of this region it is said to be non-dominated. This

geometric definition of dominance coincides with the algebraic definition

given in section 4. 2, as it can easily be shown.

When the primary region does not include any point of the positive

orthant (i. e. any point such that t a> 0 , tb > 0) it means that the

objective function, z, has reached its optimal value, and the present

solution is optimal (although there might be other optimal solutions).

Whenever we generate a cut for pivoting, it will be non-dominated

and, once we pivot, the cut will become one of coordinate axis and the

new primary region will be a subset of the previous one. This will occur

whether we have a zero- or a non-zero-cut. If we have a non-zero-cut,
k k I k

there will be a shift of the line z = a k (when a0 , 1 > a0 ,) so that the

primary region will be reduced further.

What the proof of section 4.2 shows, is, in geometric terms, that

-88-

as we introduce new cuts, the primary region diminishes consistently

until the positive orthant (in terms of the current set of parametic

variables) is completely excluded. At this point optimality is proved.

In other words, every time we pivot, the system of coordinates is

translated from one vertex to another and/or rotated around a vertex of

the restricted polyhedron, so that eventually there is no better point in

the non-negative orthant of the (current) system of coordinates.

-89-

CHAPTER 7

SUGGESTED EXTENSIONS

In the first section of this chapter we present the concept of a

"Tight" Algorithm which would be similar to our basic algorithm except

that the parametric variables would always correspond to deepest cuts. In

the second section we introduce the notion of fractionalization of variables,

and we advance some ideas as to how this concept could be used to develop

a new approach for solving mixed integer LP problems.

7. 1 A "Tight" Algorithm

Further study of the Gomory cuts in the context of the primal feasible

algorithm should lead to a procedure for generating some of the deepest

cuts that define any specific vertex of the restricted polyhedron. By using

inverse pivoting these deepest cuts may be expressed in terms of some

initial set of parametric variables.

To be more specific, let us assume that we have our tableau (with

an initial feasible solution), and that every parametric variable t. is a

deepest cut variable. This means that there is a breakthrough in every

column (some are in the maximizing direction, some in the minimizing

-90-

direction). If we are maximizing we could choose any negative column

and we would be able to obtain a non-zero-cut that, upon pivoting, would

take us to another vertex. This non-zero-cut will not necessarily be a

deepest cut. However, we might be able to find a "deepest cut procedure"

so that, in fact, we obtain the expression of that deepest cut which would

not only move to the next vertex, but the tableau would again be entirely in

terms of deepest cut variables.

The tableau would have rational coefficients, rat er than integer

ones, but by appropriately changing the scale of some r all of the row

variables, we should be able to keep the new coefficients in terms of

integers.

A "Tight" Algorithm could have two special advantages: in the first

place, it might turn out to be computationally more efficient than the

Basic Algorithm (i. e. it might be an "accelerated" version of the Basic

Algorithm); in the second place, the fact that at every vertex the constraints

may be expressed in terms of a uniquely defined set of parametric

variables (i. e. the variables corresponding to the deepest cuts that define

that vertex) could turn out to have important consequences for the study of

duality in integer LP.

-91 -

7. 2 Fractionalization of Variables and Mixed Integer LP

Two of the reasons for the use of all-integer algorithms in integer

LP are: first, to obtain exact solutions; and second, to use, at least

implicitly, the number theoretic properties of the coefficients. However,

it should be pointed out that the generation of Gomory cuts is valid

whether the coefficients are integer or not. For example, if all the

coefficients of the tableau (excepting the last n rows which give the

intege variables x. , j = 1, ... , n in terms of the parametric variables

t.) were not integral, our primal feasible algorithm should still work. The3

slack variables might not have integer values, but the xj s will always

have integer values.

We define fractionalization of a variable as the process of replacing
a parametric variable. t. by another variable t! such that t. = t!/k

where k is some positive integer. This is equivalent to dividing every

element in column j by k . We could either express these new elements

as rational numbers, or as decimal fractions; or we could multiply every

element of the tableau by k , thus eliminating fractions by changing the

scale of the row variables.

The result of this fractionalization is that the lattice of integer

points of the new system of coordinates is "finer" (in the t. -direction)

than the previous lattice. However, every point of the old lattice is also

-92-

a point of the new one.

If all the coefficients and constants of a mixed integer LP problem

are rational numbers, then every extreme)lution (i.e. every vertex of

the restricted polyhedron) will be in terms of rational numbers. It is

conceivable that a mixed integer LP problem could be transformed into a

pure integer LP problem by proper fractionalization of some of the

variables.

-93-

BIBLIOGRAPHY

I -INTEGER LINEAR PROGRAMMING

[I] BEN-ISRAEL and CHARNES, A. - "On Some Problems of Diophantine
Programming", Cahiers du Centre d' Etudes de Recherche
Op~rationnelle, pp. 215-280, 1962.

[2] GLOVER, FRED - "A Study of the All-Integer Integer Programming
Algorithm", O.N.R. Research Memorandum No. 116, Cajrnegie
Institute of Technology, 1963. I,

(3] GLOVER, FRED - "A Bound Escalation Method for the Solution of
Integer Linear Programs", O.N.R. Research Memorandum No. 119,
Carnegie Institute of Technology, 1963.

(4] GOMORY, R. E. - "Outline of an Algorithm for Integer Solutions to
Linear Programs", American Math. Soc. Bulletin, Vol. 64, No. 5,
1958.

(5] GOMORY, R. E. - "An Algorithm for Integer Solutions to Linear
Programs", Technical Report No. 1, (Princeton - I.B.M.
Mathematics Research Project), Nov. 17, 1958. (Also in Ref. [7],
pp. 269-302).

(6] GOMORY, R. E. - "An All-Integer Integer Linear Progra I ining
Algorithm", I. B. M. Research Report, RC-189, Jan. 29, 1960.
(Also as Chapter 13 of Ref. [9]).

(7] GRAVES, R. L. and WOLFE, P. (editors) - Recent Advances in
Mathematical Programming, McGraw-Hill Book Co., 1963.

(8] MARTIN, GLENN T. - "An Accelerated Euclidean Algorithm for
Integer Linear Programming", Recent Advances in Mathematical
Programming, Graves and Wolfe, editors, McGraw-Hill Book Co.,
pp. 311-317, 1963.

-94-

[9] MUTH, J. F. and THOMPSON, G. L. (editors) - Industrial
Scheduling, Prentice-Hall, Englewood Cliffs, N. J. , 1963.

[10] THOMPSON, G. L. - "The Stopped Simplex Method: I. Basic

Theory for Mixed Integer Programming; Integer Programming",

Revue Francaise .e Recherche Opfrationelle, Vol. 8, No. 31,

pp. 159-182, 1964.

[11] VAN SLYKE, RICHARD and WETS, ROGER - "On Diagonalization
Methods in Integer Programming", 0. R. Center Research Report

No. 27, Univ. of Calif., Berkeley, pp. 25, (U.S. Govt.: Doc. No.
AD-288053), 1963.

II - MIXED INTEGER LINEAR PROGRAMMING

[12] BALAS, EGON - "Un Algorithme Additif pour la Resolution des
Programmes Lineares en Variables Bivalentes', C.R. Acad. Sci.
Paris, 258 (1964), 3817-3820.

[13] BEALE, E. M. L. - "A Method of Solving Linear Programming
Problems When Some but Not All of the Variables Must Take
Integral Values", Technical Report No. 19, (Princeton University
Statistical Techniques Research Group), July 1958.

[14] BENDERS, J. F. - "Partitioning Procedures for Solving Mixed-
Variables Programming Problems", Numerische Mathematik,
Vol. 4, pp. 238-252, 1962-63.

[15] FEDEROWICZ, ALEXANDER V. - "A Generalized Algorithm
Solution of a Class of Non-Convex Programming Problems", Ph. D.
Thesis in Mathematics, Carnegie Institute of Technology, 1963.

[16] GOMORY, R. E. - "A Method for the Mixed Integer Problem",
The RAND Corporation, Santa Monica, (RM-2597), 1960.

[17] HARRIS, PAULA M. V. - "An Algorithm for Solving Mixed Integer
Linear Programmes", O.R.Q. , Vol. 15, No. 2, pp, 117-132, 1964.

-95-

[181 HEALY, W. C., JR. - "Multiple Choice Programming" (A
Procedure for Linear Programming with Zero-One Variables),
Opeieations Research, Vol. 12, No. 1, pp. 122-138, 1964.

(19] LAND, A. H. and DOIG, A. - "An Automatic Method of Solving
Discrete Programming Problems", Econometrica, Vol, 28,
pp. 497-520, 1960.

[20] SZWARC, WLODZIMIERZ - "The Mixed Integer Linear Programming
Problem When the Integer Variablrs are Zero or One", Carnegie
Institute of Technology, 1963.

[211 TONGE, FRED M. - "A Revised Algorithm for the Mixed Integer
Programming Problem with Boolean Variables", Carnegie
Institute of Technology, Research Memorandum for Private
Circulation, June 1963.

III - NUMBER THEORY

(22] BLANKINSIIP, W. A. - "A New Version of the Euclidean Algorithm",
American Mathematical Monthly, 70, pp. 742-745, 1963.

[23] ORE, 0. - Number Theory and Its History, New York, McGraw-Hill
Book Co., 1948.

[24] USPENSKY, J. V. and HEASLET, M. H. - Elementary Number
Theory, New York, McGraw-Hill Book Co., 1939.

-96-

APPENDIX A

SOME CONSIDERATIONS ABOUT THE LEXICOGRAPHICAL

SIMPLEX METHOD

A. 1 Proof of Optimality

Lemma A. 1 If the tableau is both primal feasible and dual feasible,

the current solution is optimal.

Procf: Let us afsume that we are maximizing. If the tableau is

k
dual feasible, it then means that aO > 0 ; j = I ... , n The current

expression for z is:

n
k k k

z = a0 0 + a, (-t.

j=l

k
We can restrict the t. ' s to be non-negative without losing any,3

feasible (integer) solution. But if the ts are non-negative, this eans

k
that the largest value of z is precisely a 0 0 and therefore, the current

solution, being feasible, is also optimal.

I we were minimizing, dual feasibility would imply that
k

a 0; j = ... , n and the proof would follow in a similar way. (Q. E. D.)

-97-

A. 2 Proof of Lexico-Optimality

Lemma A. 2 If the tableau is both primal feasible and lexico-dual

feasible, the current solution is lexico-optimal.

Proof: Let us assume that we are lexico-maximizing. If the tablea)

is lexico-dual feasible, it means that every column (not considering

column zero) is lexico-positive; that is, the first non-zero element of

each column is positive. This means that a0 > 0 , j = 1,..., n, and

from lemma A. 1, we realize that z has attained its maximum value. We

have to check whether the solution is the lexico-largest feasible solution.

That is, we have to see if the ht h component of the solution could increas

its current value without decreasing the value of any one of the previous

components. Consider the following row:

n
shak +' k tkh
h h, h ,(-)

j=l

Now, because we constrain the t. k s to be non-negative, h can

k k
only increase if ah, J< 0 for some j , say j=jO. But if ah, j0 < 0,

k
this means that there must be some i < h such that a. > 0 , because

every column is lexico-positive. Thus, if we increase tj0 . the value of

ah will certainly increase, but s. will decrease, and this will result in

7 a lexico-smaller solution. Therefore, the current solution is the lexico-

larges:.

-98-

A similar argument would be used if we were lexico-minimizing.

(Q.E.D.)

A. 3 The Usefulness of a Lexicographical Simplex Method

If we are minimizing with a "plain" simplex method, we consider for

pivoting only those columns j with a0 , > 0 ; whereas, if we are using a

lexicographical method, we will consider those columns which are lexico-

positive.

Let us consider the following problems:

min z= x - x
2 3

with -x - x2 + 2x -< 1
1 2 3

x - 2x 2 +x 3 -< I

Xi , X2 , x 3 non-negative integers

If we try to solve this example with our basic algorithm, and using

a "plain" criterion for considering pivoting columns, we will always have

a single c hoice of pivoting column and a single choice of generating row.

Furthermore, cycling will occur and the optimal solution will not be

found.

On the other hand, if we use a lexicographical criterion for

considering pivoting columns, we will obtain the lexico-optimal solution

in four iterations. This example shows that the lexicographical simplex

-99-

method, or some other device to stop cycling, is necessary for our bas

algorithm.

-100-

APPENDIX B

LEXICO-MINIMIZATION AS A PROCEDURE

FOR IMPLICIT TABLEAU REDUCTION

In Chapter 3 it was shown how one could take advantage of any

equalities in the original problem, for reducing the size of the tableau

through the elimination of zero-variables. It turns out that an equivalent

result can be obtained in some instances by properly rearranging rows and

then lexico-minimizing the problem.

More specifically, let us assume that we have a tableau such that

the only infeasibilities correspond to some zero-variables that have non-

zero values. We now rearrange the rows so that all the zero-variable

rows occupy the first places (including those zero-variable rows that are

feasible), followed by the objective variable row, by the rows corresponding

to non-negative variables, and by the rows corresponding to other unsigned

variables (we may have or may not have an objective variable).

If the problem is lexico-minimized and there exists a feasible

solution, the first components of the solution - those corresponding to the

zero-variables - will have a value of zero. Furthermore, because the

lexico-optimal solution requires that every column be lexico-negative,

-101-

this implies that there is no positive element in the first row. As a

matter of fact, in the process of solution there will be a step where only

one negative element will be left in row 1; every other element being

zero. It follows that the column corresponding to this negative element

will never again be chosen for pivoting because it is lexico-negative and

there is no way in which iE can change its lexicographical sign. This is

what we call implicit reduction of the tableau. Similarly, the second row

will reach a later step where (if we leave out the column implicitly reduced

by row 1) it will have a single negative element among zero elements.

This negative element determines another negative column that is

implicitly reduced, and which will not be chosen for pivoting. A similar

thing may happen with every zero-variable row. The net result is that the

tableau automatically acquires a triangular canonical form.

-102-

BIOGRAPHICAL NOTE

R~mulo Hector Gonzalez-Zubieta was born in Mexico City, Mexico,

on September 11, 1939. He attended private primary and secondary

schools in Monterrey, Mexico.

He attended tie Instituto Tecnologico de Monterrey and received the

degrees of Licencildo en Matematicas and of Licenciado en Fisica, both

with "Mencion Honcrifica", in June, 1960.

Mr. Gonzalez-Zubieta received a U. S. State Department Scholarship

through the Institute of International Education for study at the Massachusetts

Institute of Technology in 1960-1961. He has been appointed Research

Assistant at the Operations Research Center, M. I. T. during the four

academic years 1961-1965. The Banco de Mexico, S.A. has granted him

financial support from September, 1963 to June, 1965. In June, 1962, Mr.

Gonzalez-Zubieta received the degree of Master of Science in Industrial

Management. His thesis was awarded the E. P. Brooks Prize for the best

graduate thesis in the School of Industrial Management in 1962.

During the summers of 1961, 1962 and 1963 he has been a consultant

for IBM de Mexico, Empaques de Carton Titan, and C-E-I-R de Mexico,

respectively.

-103-

Mr. Gonzdlez-Zubieta is a member of the Operations Research

Society of America, and of The Institute of Management Sciences.

In December 1963, he married the former Bertha Diaz Barreiro

Saavedra. Their first child is Monica Irene.

-104-

